RESUMO
Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.
RESUMO
Temperature is spatially heterogeneous over leaf surfaces, yet the underlying mechanisms are not fully resolved. We hypothesized that the 3D leaf microtopography determines locally the amount of incoming irradiation flux at leaf surface, thereby driving the temperature gradient over the leaf surface. This hypothesis was tested by developing a model of leaf temperature heterogeneity that includes the development of the leaf boundary layer, the microtopography of the leaf surface and the physiological response of the leaf. Temperature distributions under various irradiation loads (1) over apple leaves based on their 3D microtopography, (2) over simulated flat (2D) apple leaves and (3) over 3D leaves with a transpiration rate distributed as in 2D leaves were simulated. Accuracy of the predictions was quantified by comparing model outputs and thermographic measurements of leaf surface temperature under controlled conditions. Only the model with 3D leaves predicted accurately the spatial heterogeneity of surface temperature over single leaves, whereas the mean temperature was well predicted by both 2D and 3D leaves. We suggest that in these conditions, the 3D leaf microtopography is the primary driver of leaf surface heterogeneity in temperature when the leaf is exposed to a light/heat source.