RESUMO
Background/Objectives: Heavy metals are a group of metals and metalloids that have a relatively high density. They can cause toxicity even at very low levels. Trace elements are required by all living organisms to maintain their normal growth, metabolism, and development. Oral intake is the main route of exposure to both heavy metals and trace elements. Phenylketonuria (PKU) is the most common amino acid metabolic disorder, and the best known treatment for patients requiring treatment is a phenylalanine (Phe)-restricted diet. The objective of the present study was to evaluate the plasma heavy metal levels, sources of exposure, changes in these levels according to dietary regimen, and trace element levels and their correlations with heavy metals in PKU patients. Methods: The study was conducted between July 2022 and January 2024 on 105 patients aged 2-6 years diagnosed with PKU. Results: The percentage of Pb levels in individuals in the upper quartile increased by 3.47 times (95% CI = 1.07-11.29) in those who consumed canned foods and 7.29 times (95% CI = 1.21-44.03) in those who consumed spring water. The percentage of As levels in the upper tertile increased by a factor of 7.26 (95% CI = 2.09-25.28) in individuals under four years of age and 8.17 times (95% CI = 2.13-31.27) in canned food users. The odds of having blood Cd levels in the upper tertile were 0.09 (95% CI = 0.01-0.96) for those being breastfed for 6-11 months compared to 0-5 months. Zn levels were lower (93.0 vs. 83.6 µg/dL, p = 0.008) in patients on a Phe-restricted diet. Conclusions: The present study did not find a relationship between heavy metal exposure and the dietary treatment status of patients with PKU. Our findings indicate that canned food consumption is a significant contributing factor to heavy metal exposure in PKU patients. Furthermore, our findings revealed a relationship between age, perception of economic level, breastfeeding, kitchen equipment, and water usage and the levels of certain heavy metals.
Assuntos
Metais Pesados , Fenilcetonúrias , Oligoelementos , Humanos , Fenilcetonúrias/sangue , Fenilcetonúrias/dietoterapia , Metais Pesados/sangue , Masculino , Pré-Escolar , Feminino , Criança , Oligoelementos/sangue , Dieta , Fenilalanina/sangue , Alimentos em ConservaRESUMO
MXenes are members of the rapidly expanding family of two-dimensional materials known for their electronic and magnetic properties and hold significant promise for advancements in electronics and spintronics technologies. In this study, we identified a stable MnCrNO2 MXene characterized by a band gap of 2.68 eV, a magnetic moment of 6µB, and a magnetic anisotropy energy of 78.6 µeV per transition metal atom. These properties were computed using density functional theory with an on-site Coulomb potential and HSE06 hybrid functional calculations. Manipulating the band gap and magnetic properties offers considerable advantages for tailoring MXenes for specific applications. Our investigation extended to exploring the property behaviors under biaxial strain, as well as the adsorption of Group-I and Group-II ions onto the newly discovered MXene. Our findings underscore a highly linear relationship between strain and band gap, supported by an impressive R2 score of 0.997 for the best-fit straight line. Moreover, we demonstrated the linear tunability of the material's magnetic anisotropy energy under biaxial strain, achieving an R2 score of 0.982. Adsorption of 2.2% Group-I and Group-II ions onto the MnCrNO2 MXene reveals the potential for a semiconductor-to-half-metal phase transition with K, Rb, Be, Mg, and Ca ions. These results provide pathways for leveraging MXenes for the development of next-generation electronic and spintronic devices.
RESUMO
Inflammation is a response to injury and infection in an organism. It can be categorized as acute or chronic. Chronic inflammation is the underlying cause of many diseases such as Alzheimer disease, diabetes, rheumatoid arthritis, atherosclerosis, and cardiovascular diseases. Recent studies have proven the antiinflammatory properties of 1,4-dihydropyridines (1,4-DHPs) and their derivatives, which have many biological activities including the blocking of calcium channels. In this study, 15 compounds that are condensed derivatives of 1,4-DHPs, with the general structure of hexahydroquinoline-3-carboxylate, were synthesized. These compounds, expected to show inhibitory activity against inflammatory mediators, were obtained by the reaction of 4-(difluoromethoxy)benzaldehyde, substituted/nonsubstituted 1,3-cyclohexanedione derivatives, and appropriate alkyl acetoacetate compounds in the presence of ammonium acetate as a nitrogen source according to the Hantzsch synthesis method. The structures of the synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, and HRMS methods. The cytotoxic properties of the compounds were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in the 3T3 cell line. Among the 15 compounds, the three compounds with the lowest levels of cytotoxic effects were selected for further experiments. Inflammation was induced by lipoxygenase and the effects of the selected compounds on the levels of reactive oxygen species, cytokines, and complement C3 and C9 regulatory proteins were investigated. It was found that the three selected compounds decreased the levels of transforming growth factor-beta 1 (TGF-ß1). Among these compounds, compound 3e provided the most significant decrease in this cytokine. Moreover, 3e increased both C3 and C9 levels. Molecular modeling studies also showed that 3e had better affinity for TGF-ß1. When the binding modes of these compounds in the active site of TGF-ß1 were analyzed, it was found that compound 3e had hydrophobic interactions with amino acids Leu142, Tyr84, and Ile13; halogen bond interactions with Asp92; and hydrogen bond interactions with Ser89, Gly88, and Gly14 in the active binding site. Further in vitro and in vivo studies are needed to show the possible mechanism of action of compound 3e.
RESUMO
Introduction: Bisphenols are widely used in the production of polycarbonate plastics and resin coatings. Bisphenol A (BPA) is suggested to cause a wide range of unwanted effects and "low dose toxicity". With the search for alternative substances to BPA, the use of other bisphenol derivatives namely bisphenol F (BPF) and bisphenol S (BPS) has increased. Methods: In the current study, we aimed to evaluate the in silico predicted inhibitory concentration 50s (pIC50s) of bisphenol derivatives on immune and apoptotic markers and DNA damage on HepG2 cells. Moreover, apoptotic, genotoxic and immunotoxic effects of BPA, BPF and BPS were determined comparatively. Effects of bisphenols on apoptosis were evaluated by detecting different caspase activities. The genotoxic effects of bisphenols were evaluated by measuring the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-oxoguanine glycosylase (OGG1). To determine the immunotoxic effect of bisphenol derivatives, the levels of interleukin 4 (IL-4) and interleukin 10 (IL-10), transforming growth factor beta (TGF-ß) and tumor necrosis factor-alpha (TNF-α), which are known to be expressed by HepG2 cells, were measured. Results: In silico data indicate that all of the bisphenols may cause alterations in immune and apoptotic markers as well as DNA damage at low doses. In vitro data revealed that all bisphenol derivatives could affect immune markers at inhibitory concentration 30s (IC30s). In addition, BPF and BPS may also have apoptotic immunotoxic effects. Conclusion: Both in silico and in vivo research are needed further to examine the toxic effects of alternative bisphenol derivatives.
RESUMO
Improving the quality of life in elderly patients and finding new treatment options for neurological diseases such as Alzheimer's has become one of the priorities in the scientific world. In recent years, the beneficial effects and therapeutic properties of natural foods on neurological health have become a very remarkable issue. Walnut oil (WO) is a promising nutraceutical, with many phytochemicals and polyunsaturated fatty acids and is thought to be promising in the treatment of many neurological diseases and cognitive deficits, such as Alzheimer's disease (AD). Polyphenolic compounds found in WO enhance intraneuronal signaling and neurogenesis and improve the sequestration of insoluble toxic protein aggregates. The objective of this study was to investigate the potential protective and therapeutic effects of WO in a model of AD induced by retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). In order to achieve this, the experimental groups were formed as follows: Control group, WO group, Alzheimer's disease (AD) group, AD + WO applied group (AD + WO). WO supplementation almost significantly reduced oxidative stress in the ad model, providing 2-fold protection against protein oxidation. Additionally, WO showed a significant reduction in tau protein levels (2-fold), increased acetylcholine (ACh) levels (12%), and decreased acetylcholine esterase (AChE) activity (~50%). Since it has been known for centuries that WO does show any adverse effects on human health and has neuroprotective properties, it may be used in the treatment of AD as an additional nutraceutical to drug treatments.
RESUMO
OBJECTIVES: Septic arthritis (SA) is a serious bacterial infection that must be treated efficiently and timely. The large number of culture-negative cases makes local epidemiological data important. Accordingly, this study aimed to evaluate the etiology, clinical characteristics, and therapeutic approach of SA in children in Turkiye, emphasizing the role of real-time polymerase chain reaction (PCR) techniques in the diagnosis. METHODS: In this multi-center, prospective study, children hospitalized due to SA between February 2018 and July 2020 in 23 hospitals in 14 cities in Turkiye were included. Clinical, demographic, laboratory, and radiological findings were assessed, and real-time PCR was performed using synovial fluid samples. RESULTS: Seventy-five children aged between 3 and 204 months diagnosed with acute SA were enrolled. Joint pain was the main complaint at admission, and the most commonly involved joints were the knees in 58 patients (77.4%). The combination of synovial fluid culture and real-time PCR detected causative bacteria in 33 patients (44%). In 14 (18.7%) patients, the etiological agent was demonstrated using only PCR. The most commonly isolated etiologic agent was Staphylococcus aureus, which was detected in 22 (29.3%) patients, while Streptococcus pyogenes was found in 4 (5.3%) patients and Kingella kingae in 3 (4%) patients. Streptococcus pyogenes and Kingella kingae were detected using only PCR. Most patients (81.3%) received combination therapy with multiple agents, and the most commonly used combination was glycopeptides plus third-generation cephalosporin. CONCLUSIONS: Staphylococcus aureus is the main pathogen in pediatric SA, and with the use of advanced diagnostic approaches, such as real-time PCR, the chance of diagnosis increases, especially in cases due to Kingella kingae and Streptococcus pyogenes.
RESUMO
Aluminum (Al) is a known neurotoxic trace element linked to Alzheimer's disease (AD). Naltrexone, an opioid antagonist, has shown promising effects in reducing neuroinflammation at lower doses than those prescribed for addiction. This study aimed to determine the neuroprotective effects of naltrexone on Al-induced neurotoxicity in an in vitro AD model. The SH-SY5Y cells were first cultivated in a standard growth medium. Subsequently, the cells were induced to differentiate by decreasing the concentration of fetal bovine serum and introducing retinoic acid (RA) into the culture media. Subsequently, the inclusion of brain-derived neurotrophic factor (BDNF) was implemented in conjunction with RA. The process of differentiation was concluded on the seventh day. Study groups (n = 3) were designed as the control group, naltrexone group, Al group, Al-Nal group, Alzheimer' model (AD) group, Alzheimer model + Al-exposed group (AD-Al), Alzheimer model + Nal applied group (AD-Nal) and Alzheimer model + Al-exposed + Nal applied group (AD-Al-Nal). Hyperphosphorylated Tau protein as the specific marker of AD was measured in all groups. Glycogen synthase kinase-3 (GSK-3)ß, Protein phosphatase 2A (PP2A), Akt and Wnt signaling pathways were analyzed comparatively. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl and reactive oxygen species) were measured comparatively in the study groups. The results showed that naltrexone reduced hyperphosphorylated tau protein levels by regulating GSK-3ß, PP2A, Akt and Wnt signaling. Also, exposure to naltrexone decreased oxidative stress parameters. Based on these results, naltrexone shows promise as a potential therapy for AD, subject to additional clinical assessments.
RESUMO
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Assuntos
Melatonina , Nanopartículas Metálicas , Nanopartículas , Humanos , Melatonina/farmacologia , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Titânio/toxicidade , Dano ao DNARESUMO
To investigate coronavirus disease 2019 (COVID-19) in infants aged 0 to 3 months because there is currently a significant gap in the literature on the subject. A cross-sectional study was conducted with the involvement of 19 medical centers across Turkey and 570 infants. The majority of the patients were male (58.2%), and the three most common symptoms were fever (78.2%), cough (44.6%), and feeding intolerance (39.9%). The results showed that a small percentage of infants had positive blood (0.9%) or urine cultures (10.2%). Most infants presented with fever (78.2%). Children without underlying conditions (UCs) had mostly a complicated respiratory course and a normal chest radiography. Significant more positive urine culture rates were observed in infants with fever. A higher incidence of respiratory support requirements and abnormal chest findings were seen in infants with chronic conditions. These infants also had a longer hospital stay than those without chronic conditions. Conclusions: Our study discloses the clinical observations and accompanying bacterial infections found in infants aged under 3 months with COVID-19. These findings can shed light on COVID-19 in infancy for physicians because there is limited clinical evidence available. What is Known: ⢠COVID-19 in infants and older children has been seen more mildly than in adults. ⢠The most common symptoms of COVID-19 in infants are fever and cough, as in older children and adults. COVID-19 should be one of the differential diagnoses in infants with fever. What is New: ⢠Although most infants under three months had fever, the clinical course was uneventful and respiratory complications were rarely observed in healthy children. ⢠Infants with underlying conditions had more frequent respiratory support and abnormal chest radiography and stayed longer in the hospital.
Assuntos
COVID-19 , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Doença Crônica , Tosse/etiologia , COVID-19/epidemiologia , COVID-19/complicações , Estudos Transversais , Turquia/epidemiologiaRESUMO
Alzheimer's disease (AD) is a progressive neurological disorder that affects various cognitive functions, behavior, and personality. AD is thought to be caused by a combination of genetic and environmental factors, including exposure to aluminum (Al). Virgin coconut oil (VCO) may have potential as a natural neuroprotectant against AD. Aim of this study was to determine neuroprotective effects of VCO on Al-induced neurotoxicity in an in vitro AD model. SH-SY5Y cells were initially cultured in normal growth medium and then differentiated by reducing fetal bovine serum content and adding retinoic acid (RA). Later, brain-derived neurotrophic factor (BDNF) was added along with RA. The differentiation process was completed on the seventh day. Study groups (n = 3) were designed as control group, VCO group, Al group, Al-VCO group, Alzheimer model (AD) group, AD + Al-exposed group (AD+Al), AD + VCO applied group (AD + VCO) and AD + Al-exposed + VCO applied group (AD + Al + VCO). Specific markers of AD (hyperphosphorylated Tau protein, amyloid beta 1-40 peptide, and amyloid precursor protein) were measured in all groups. In addition, oxidative stress parameters (total antioxidant capacity, lipid peroxidase, protein carbonyl, and reactive oxygen species) and neurotransmitter-related parameters (dopamine, dopamine transporter acetylcholine, and synuclein alpha levels, acetylcholinesterase activity) were measured comparatively in the study groups. VCO reduced amyloid beta and hyperphosphorylated Tau protein levels in the study groups. In addition, oxidative stress levels decreased, and neurotransmitter parameters improved with VCO. Our study shows that VCO may have potential therapeutic effects in Alzheimer's disease and further experiments are needed to determine its efficacy.
Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Óleo de Coco/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Alumínio/toxicidade , Peptídeos beta-Amiloides/toxicidade , Acetilcolinesterase/metabolismo , NeurotransmissoresRESUMO
We investigated the interaction between biomimetic Fe and Mg co-doped montmorillonite nanoclay and eleven unnatural amino acids. Employing three different functionals (PBE-GGA, PBE-GGA + U, and HSE06), we examined the clay's structural, electronic, and magnetic properties. Our results revealed the necessity of using PBE-GGA + U with U ≥ 4 eV to accurately describe key clay properties. We identified amino acids that strongly interacted with the clay surface, with steric orientation playing a crucial role in facilitating binding. Our DFT calculations highlighted significant electrostatic interactions between the amino acids and the clay slab, with the amino group's predominant role in this interaction. These findings hold promise for designing amino acids for clay-amino acid systems, leading to innovative bio-material composites for various applications. Additionally, our ab-initio molecular dynamics simulations confirmed the stability of clay-amino acid systems under ambient conditions, and the introduction of an implicit water solvent enhanced the binding energy of amino acids on the clay surface.
RESUMO
Dihydrolipoic acid (DHLA) is a natural antioxidant known for its ability to counteract metal toxicity and oxidative stress. It has shown the potential to safeguard cells from harmful environmental substances. It may hold therapeutic benefits in treating neurodegenerative disorders by defending against oxidative damage and chronic inflammation. Thus, this study aimed to explore the potential neuroprotective effects of DHLA against aluminum (Al)-induced toxicity using an Alzheimer's disease (AD) model in vitro. The study focused on two important pathways: GSK-3ß and the Wnt signaling pathways. The SH-SY5Y cell line was differentiated to establish AD, and the study group were as follows: control, Al, DHLA, Al-DHLA, AD, AD-Al, AD-DHLA, and AD-Al-DHLA. The impact of DHLA on parameters related to oxidative stress was assessed. The activity of the GSK-3ß pathway was measured by evaluating the levels of PPP1CA, PP2A, GSK-3ß, and Akt. The Wnt signaling pathway was assessed by measuring Wnt/ß-catenin in the different study groups. Exposure to DHLA significantly reduced oxidative stress by effectively decreasing the levels of reactive oxygen species, thereby protecting against protein oxidation and limiting the production of malonaldehyde. Moreover, the DHLA-treated groups exhibited a remarkable increase in the total antioxidant capacity. Furthermore, the study observed an upregulation of the Wnt signaling pathway and a downregulation of the GSK-3ß pathway in the groups treated with DHLA. In summary, the neuroprotective effects of DHLA, primarily achieved by reducing oxidative stress and modulating critical imbalanced pathways associated with AD, indicate its potential as a promising addition to the treatment regimens of AD patients.
Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Alumínio/toxicidade , Glicogênio Sintase Quinase 3 beta , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Alzheimer/tratamento farmacológicoRESUMO
This multi-center point prevalence study evaluated children who were diagnosed as having coronavirus disease 2019 (COVID-19). On February 2nd, 2022, inpatients and outpatients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were included in the study from 12 cities and 24 centers in Turkey. Of 8605 patients on February 2nd, 2022, in participating centers, 706 (8.2%) had COVID-19. The median age of the 706 patients was 92.50 months, 53.4% were female, and 76.7% were inpatients. The three most common symptoms of the patients with COVID-19 were fever (56.6%), cough (41.3%), and fatigue (27.5%). The three most common underlying chronic diseases (UCDs) were asthma (3.4%), neurologic disorders (3.3%), and obesity (2.6%). The SARS-CoV-2-related pneumoniae rate was 10.7%. The COVID-19 vaccination rate was 12.5% in all patients. Among patients aged over 12 years with access to the vaccine given by the Republic of Turkey Ministry of Health, the vaccination rate was 38.7%. Patients with UCDs presented with dyspnea and pneumoniae more frequently than those without UCDs (p < 0.001 for both). The rates of fever, diarrhea, and pneumoniae were higher in patients without COVID-19 vaccinations (p = 0.001, p = 0.012, and p = 0.027). Conclusion: To lessen the effects of the disease, all eligible children should receive the COVID-19 vaccine. The illness may specifically endanger children with UCDs. What is Known: ⢠Children with COVID-19 mainly present with fever and cough, as in adults. ⢠COVID-19 may specifically threaten children with underlying chronic diseases. What is New: ⢠Children with obesity have a higher vaccination rate against COVID-19 than children without obesity. ⢠Among unvaccinated children, fever and pneumoniae might be seen at a higher ratio than among vaccinated children.
Assuntos
COVID-19 , Adulto , Humanos , Criança , Feminino , Idoso , Masculino , COVID-19/epidemiologia , SARS-CoV-2 , Vacinas contra COVID-19 , Pacientes Ambulatoriais , Tosse , Pacientes Internados , Turquia/epidemiologia , Prevalência , Obesidade , Doença CrônicaRESUMO
Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory loss and dementia and is characterized by a decline in cognitive functions. Brain infections, especially induced by herpes simplex virus type-1 (HSV-1), are suggested to play a key role in the pathogenesis of AD. Within the scope of this study, two different AD models (Tau model and amyloid beta [Aß]) were created in the SH-SY5Y cell line, and HSV glycoprotein B (gB) was applied to the cell line and on the generated AD models. Study groups (n = 3) were designed as (1) control, (2) HSV-gB group, (3) retinoic acid (RA) and brain derived neurotrophic factor (BDNF) induced Alzheimer's model (AD), (4) RA and BDNF induced Alzheimer's model + HSV-gB (ADH), (5) Aß 1-42 peptide-induced Alzheimer's model (Aß), and (6) Aß 1-42 peptide-induced Alzheimer's model + HSV-gB (AßH). Levels of complement proteins and cytokines were determined comparatively. In addition, specific markers of AD (hyperphosphorylated Tau proteins, Aß 1-40 peptide and amyloid precursor protein) were measured in all groups. HSV-gB administration was found to increase Aß and hyperphosphorylated Tau levels, similar to AD models. In addition, our data confirmed that the immune system and chronic inflammation might have a crucial role in AD development and that HSV-1 infection might also be an underlying factor of AD.
Assuntos
Doença de Alzheimer , Herpes Simples , Neuroblastoma , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas , Herpes Simples/metabolismo , Glicoproteínas , Proteínas do Sistema ComplementoRESUMO
Dental implants are medical devices that are surgically inserted into the patient's jawbone by an orthodontist to act as roots of missing teeth. After the implantation, the maxilla or mandible integrates with the surface of the dental implant. This process, called "osseointegration," is an important period to ensure the long-term use of dental implants and prevent implant failures. Metal implants are the most used implant materials. However, they have disadvantages such as corrosion, metal ion release from metal implant surfaces and associated toxicity. To avoid these adverse effects and improve osseointegration, alternative dental implant materials such as ceramics, polymers, composites, and novel surface modification technologies have been developed. The safety of these materials are also of concern for toxicologists. This review will give general information about dental implant materials, osseointegration and successful implantation process. Moreover, we will focus on the new surface coatings materials for of dental implants and their toxicity and safety concerns will be discussed.
Assuntos
Implantes Dentários , Humanos , Propriedades de Superfície , Osseointegração , Maxila , MandíbulaRESUMO
This study was conducted to estimate the daily dietary intakes of melamine for human milk-fed (HMF) babies and mixed-fed (MF) babies. It was carried out in 70 mother-baby pairs (40 babies in the HMF group and 30 babies in the MF group). Human milk, formula milk, and baby urine samples were collected to assess the dietary exposure of babies. Melamine concentrations were analyzed by using a competitive enzyme-linked immunosorbent assay. Melamine was determined in 82.5 % of the human milk samples in the HMF group (median: 0.75 µg/L) while it was present in 96.7 % of human milk samples (median: 1.25 µg/L) and 96.7 % in formula milk samples (median: 0.95 µg/kg) in the MF group. The mean urinary melamine concentration of HMF babies (1.20 ± 0.21 µg/L) was not significantly different than MF babies (1.35 ± 0.49 µg/L). Melamine exposure was calculated as 0.12 µg/kg bw/day and 0.24 µg/kg bw/day in HMF and MF babies, respectively. Melamine exposure in both groups was below the tolerable daily intake. There were no significant associations between melamine exposure and various features of babies and mothers. As a result, it can be suggested that Turkish babies (aged 0-6 months) are not at risk for high melamine exposure through the diet.
Assuntos
Leite Humano , Triazinas , Lactente , Feminino , Humanos , Ingestão de Alimentos , Dieta , Aleitamento MaternoRESUMO
This study aimed to estimate and compare dietary exposure to bisphenol A (BPA) in exclusively breastfed (EBF) and breastfed plus formula-fed (BF + FF) infants. A total of 70 mothers and their 0-6 month-old infants (40 in the EBF group and 30 in BF + FF group) were included in the study. After the questionnaire form was applied to the mothers, maternal breast milk, infant formula, and infant urine were collected from mother-infant dyads. Total BPA levels in breast milk, infant formula, and infant urine samples were analyzed by the high-pressure liquid chromatography (HPLC). While BPA was detected in 92.5% of the breast milk samples in the EBF group (mean ± SD = 0.59 ± 0.29 ng/mL), BPA was detected in all of the breast milk samples in the BF + FF group (mean ± SD= 0.72 ± 0.37 ng/mL) (p < 0.05). Similarly, 100% of the infant formula samples in the BF + FF group had detectable levels of BPA (mean ± SD = 7.54 ± 1.77 ng/g formula). The mean urinary BPA levels in the EBF infants (4.33 ± 1.89 µg/g creatinine) were not statistically different from the BF + FF infants (5.81 ± 0.11 µg/g creatinine) (p > 0.05). The average daily BPA intake in EBF infants (0.18 ± 0.13 µg/kg body weight (bw)/day) was found to be significantly higher than in BF + FF infants (0.12 ± 0.09 µg/kg bw/day) (p < 0.05). The estimated dietary intakes of BPA for infants in both groups were below the temporary tolerable daily intake (t-TDI) (4 µg/kg bw/day). Consequently, BPA intake of EBF and BF + FF infants were within safe daily limits during the first six months of life.
RESUMO
In this study, we aimed to evaluate possible toxic effects of thimerosal, aluminum and combination of thimerosal and aluminum in SH-SY5Y cells. Inhibitory concentrations were determined by MTT assay; reactive oxygen species (ROS) were determined by a fluorometric kit and antioxidant/oxidant parameters were measured by spectrophotometric kits. Nuclear factor erythroid 2-associated factor 2 (Nrf2), norepinephrine (NE), dopamine transporter (DAT) and dopamine beta ß-hydroxylase (DBH) levels were measured by sandwich ELISA kits while 8-hydroxy deoxyguanosine (8-OHdG) and dopamine levels were determined by competitive ELISA kits. Thimerosal (1.15 µM) and aluminum (362 µM) were applied to cells at inhibitory concentrations 20 (IC20s) for 24 h. ROS increased significantly in cells aluminum- and aluminum+thimerosal-treated cells. Glutathione levels decreased in aluminum group while total antioxidant capacity and protein oxidation levels increased significantly in aluminum and aluminum+thimerosal groups. Lipid peroxidation increased significantly in groups treated with aluminum and aluminum+thimerosal. Nrf2 levels and DNA damage were significantly higher in all groups while dopamine levels significantly increased in cells treated with thimerosal and aluminum+thimerosal, DAT levels were found to be higher in all experimental groups compared to the control. These findings showed that both thimerosal and aluminum can change oxidant/antioxidant status, cause DNA damage, alter dopamine and DAT levels. Changes seen in cells treated with combined exposure to aluminum and thimerosal are more pronounced. Special care should be taken while vaccinating sensitive populations and safer alternatives for aluminum and thimerosal should used.
Assuntos
Neuroblastoma , Timerosal , Humanos , Timerosal/toxicidade , Hidróxido de Alumínio , Alumínio/toxicidade , Fator 2 Relacionado a NF-E2 , Dopamina , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Neuroblastoma/metabolismo , Linhagem Celular , OxidantesRESUMO
OBJECTIVE: In this study, we sought to describe the clinical, laboratory, and genetic character- istics of patients diagnosed with primary hemophagocytic lymphohistiocytosis. Thus, we aimed to evaluate the early diagnosis and appropriate treatment options for pediatric hemophago- cytic lymphohistiocytosis patients. MATERIALS AND METHODS: Medical records of 9 patients diagnosed with primary hemophago- cytic lymphohistiocytosis between November 2013 and December 2019 were analyzed retro- spectively. Clinical, genetic, and laboratory characteristics, family histories, initial complaints, physical examination findings, age at diagnosis, treatment choices, and clinical follow-up of all patients were investigated. RESULTS: The mean age at diagnosis was 11 months (range: 1.5 months to 17 years). Genetic analysis was performed in all patients, and a disease-related mutation was detected in 8 (89%) of them. Among clinical features, 6 (66%) patients had fever, 5 (56%) had splenomegaly, 4 (44%) had lymphadenopathy, 4 (44%) had skin rash, and 4 (44%) had neurological findings. Hemophagocytosis was observed in the bone marrow samples of 6 (66%) patients. Disease remission was achieved in 7 (78%) patients. Hematopoietic stem cell transplantation was per- formed in 7 (78%) patients. CONCLUSION: Hemophagocytic lymphohistiocytosis may present with different clinical symptoms that can cause a significant diagnostic delay. The only curative treatment option in primary hemophagocytic lymphohistiocytosis patients is hematopoietic stem cell transplantation. The chemotherapy should be started as early as possible, in order to achieve a disease remission. Patients should be referred to the appropriate bone marrow transplant center for hematopoi- etic stem cell transplantation as soon as they reach the disease remission.
RESUMO
INTRODUCTION: Health care workers (HCWs) are disproportionately exposed to infectious diseases and play a role in nosocomial transmission, making them a key demographic for vaccination. HCW vaccination rates are not optimal in many countries; hence, compulsory vaccination policies have been implemented in some countries. Although these policies are effective and necessary under certain conditions, resolving HCWs' hesitancies and misconceptions about vaccines is crucial. HCWs have the advantage of direct contact with patients; hence, they can respond to safety concerns, explain the benefits of vaccination, and counter antivaccine campaigns that escalate during pandemics, as has been observed with COVID-19. METHOD: A short survey was carried out in May-June 2020 on the vaccination status of HCWs working with pediatric patients with COVID-19. The survey inquired about their vaccination status (mumps/measles/rubella [MMR], varicella, influenza, and diphtheria/tetanus [dT]) and willingness to receive hypothetical future COVID-19 vaccines. The respondents were grouped according to gender, age, occupation, and region. RESULTS: In total, 4927 HCWs responded to the survey. Most were young, healthy adults. The overall vaccination rates were 57.8% for dT in the past 10 years, 44.5% for MMR, 33.2% for varicella, and 13.5% for influenza. Vaccination rates were the highest among physicians. The majority of HCWs (81%) stated that they would be willing to receive COVID-19 vaccines. CONCLUSION: Although vaccination rates for well-established vaccines were low, a majority of HCWs were willing to receive COVID-19 vaccines when available. Education and administrative trust should be enhanced to increase vaccination rates among HCWs.