Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(9)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39329567

RESUMO

The performance of ultra-high-performance concrete (UHPC) allows for the design and creation of thinner elements with superior overall durability. The compressive strength of UHPC is a value that can be reached after a certain period of time through a series of tests and cures. However, this value can be estimated by machine-learning methods. In this study, multilayer perceptron (MLP) and Stacking Regressor, an ensemble machine-learning models, is used to predict the compressive strength of high-performance concrete. Then, the ML model's performance is explained with a feature importance analysis and Shapley additive explanations (SHAPs), and the developed models are interpreted. The effect of using different random splits for the training and test sets has been investigated. It was observed that the stacking regressor, which combined the outputs of Extreme Gradient Boosting (XGBoost), Category Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), and Extra Trees regressors using random forest as the final estimator, performed significantly better than the MLP regressor. It was shown that the compressive strength was predicted by the stacking regressor with an average R2 score of 0.971 on the test set. On the other hand, the average R2 score of the MLP model was 0.909. The results of the SHAP analysis showed that the age of concrete and the amounts of silica fume, fiber, superplasticizer, cement, aggregate, and water have the greatest impact on the model predictions.

2.
Materials (Basel) ; 16(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37444890

RESUMO

Basalt fibers are a type of reinforcing fiber that can be added to concrete to improve its strength, durability, resistance to cracking, and overall performance. The addition of basalt fibers with high tensile strength has a particularly favorable impact on the splitting tensile strength of concrete. The current study presents a data set of experimental results of splitting tests curated from the literature. Some of the best-performing ensemble learning techniques such as Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Random Forest, and Categorical Boosting (CatBoost) have been applied to the prediction of the splitting tensile strength of concrete reinforced with basalt fibers. State-of-the-art performance metrics such as the root mean squared error, mean absolute error and the coefficient of determination have been used for measuring the accuracy of the prediction. The impact of each input feature on the model prediction has been visualized using the Shapley Additive Explanations (SHAP) algorithm and individual conditional expectation (ICE) plots. A coefficient of determination greater than 0.9 could be achieved by the XGBoost algorithm in the prediction of the splitting tensile strength.

3.
Materials (Basel) ; 15(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233966

RESUMO

Metaheuristic optimization techniques are widely applied in the optimal design of structural members. This paper presents the application of the harmony search algorithm to the optimal dimensioning of reinforced concrete circular columns. For the objective of optimization, the total cost of steel and concrete associated with the construction process were selected. The selected variables of optimization include the diameter of the column, the total cross-sectional area of steel, the unit costs of steel and concrete used in the construction, the total length of the column, and applied axial force and the bending moment acting on the column. By using the minimum allowable dimensions as the constraints of optimization, 3125 different data samples were generated where each data sample is an optimal design configuration. Based on the generated dataset, the SHapley Additive exPlanations (SHAP) algorithm was applied in combination with ensemble learning predictive models to determine the impact of each design variable on the model predictions. The relationships between the design variables and the objective function were visualized using the design of experiments methodology. Applying state-of-the-art statistical accuracy measures such as the coefficient of determination, the predictive models were demonstrated to be highly accurate. The current study demonstrates a novel technique for generating large datasets for the development of data-driven machine learning models. This new methodology can enhance the availability of large datasets, thereby facilitating the application of high-performance machine learning predictive models for optimal structural design.

4.
Materials (Basel) ; 15(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35888460

RESUMO

This paper develops predictive models for optimal dimensions that minimize the construction cost associated with reinforced concrete retaining walls. Random Forest, Extreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) algorithms were applied to obtain the predictive models. Predictive models were trained using a comprehensive dataset, which was generated using the Harmony Search (HS) algorithm. Each data sample in this database consists of a unique combination of the soil density, friction angle, ultimate bearing pressure, surcharge, the unit cost of concrete, and six different dimensions that describe an optimal retaining wall geometry. The influence of these design features on the optimal dimensioning and their interdependence are explained and visualized using the SHapley Additive exPlanations (SHAP) algorithm. The prediction accuracy of the used ensemble learning methods is evaluated with different metrics of accuracy such as the coefficient of determination, root mean square error, and mean absolute error. Comparing predicted and actual optimal dimensions on a test set showed that an R2 score of 0.99 could be achieved. In terms of computational speed, the LightGBM algorithm was found to be the fastest, with an average execution speed of 6.17 s for the training and testing of the model. On the other hand, the highest accuracy could be achieved by the CatBoost algorithm. The availability of open-source machine learning algorithms and high-quality datasets makes it possible for designers to supplement traditional design procedures with newly developed machine learning techniques. The novel methodology proposed in this paper aims at producing larger datasets, thereby increasing the applicability and accuracy of machine learning algorithms in relation to optimal dimensioning of structures.

5.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454439

RESUMO

Fiber-reinforced polymer (FRP) rebars are increasingly being used as an alternative to steel rebars in reinforced concrete (RC) members due to their excellent corrosion resistance capability and enhanced mechanical properties. Extensive research works have been performed in the last two decades to develop predictive models, codes, and guidelines to estimate the axial load-carrying capacity of FRP-RC columns. This study utilizes the power of artificial intelligence and develops an alternative approach to predict the axial capacity of FRP-RC columns more accurately using data-driven machine learning (ML) algorithms. A database of 117 tests of axially loaded FRP-RC columns is collected from the literature. The geometric and material properties, column shape and slenderness ratio, reinforcement details, and FRP types are used as the input variables, while the load-carrying capacity is used as the output response to develop the ML models. Furthermore, the input-output relationship of the ML model is explained through feature importance analysis and the SHapely Additive exPlanations (SHAP) approach. Eight ML models, namely, Kernel Ridge Regression, Lasso Regression, Support Vector Machine, Gradient Boosting Machine, Adaptive Boosting, Random Forest, Categorical Gradient Boosting, and Extreme Gradient Boosting, are used in this study for capacity prediction, and their relative performances are compared to identify the best-performing ML model. Finally, predictive equations are proposed using the harmony search optimization and the model interpretations obtained through the SHAP algorithm.

6.
Materials (Basel) ; 13(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604733

RESUMO

One of the major goals in the process of designing structural components is to achieve the highest possible buckling load of the structural component while keeping the cost and weight at a minimum. This paper illustrates the application of the harmony search algorithm to the buckling load maximisation of dispersed laminated composite plates with rectangular geometry. The ply thicknesses and fiber orientation angles of the plies were chosen as the design variables. Besides the commonly used carbon fiber reinforced composites, boron/epoxy and glass/epoxy composite plates were also optimised using the harmony search algorithm. Furthermore, the optimisation algorithm was applied to plates with three different aspect ratios (ratio of the longer side length to the shorter side length of the plate). The buckling loads of the plates with optimised dispersed stacking sequences were compared to the buckling loads of plates with the commonly applied 0°, ±45°, and 90° fiber angle sequence and identical ply thicknesses. For all three aspect ratios and materials in this study, the dispersed stacking sequences performed better than the plates with regular stacking sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA