Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591615

RESUMO

Fabric-reinforced cementitious matrix (FRCM) composites, comprising high-strength fiber textiles embedded within inorganic matrices, represent an effective, cost-efficient, and low-invasive solution for strengthening and retrofitting existing masonry and reinforced concrete structures. Among different textiles employed in FRCM composites, polyparaphenylene benzo-bisoxazole (PBO) textiles are adopted due to their high tensile strength and good adhesion with the matrix. Although several experimental, numerical, and analytical works were performed to investigate the mechanical properties of PBO FRCM composites, limited information is available on their long-term behavior, as well as in the case of exposure to aggressive environments. This paper presents and discusses the results of a wide experimental campaign aimed at investigating the effect of different environmental conditions on the long-term tensile behavior of a PBO FRCM composite. Tests are performed using a clamping-grip tensile test set-up. The effect of various aggressive environments on the composite matrix cracking stress, composite tensile strength, ultimate strain, and fully cracked stage slope is investigated by comparing the results of nominally equal conditioned and unconditioned (control) specimens. These results are also compared with those of other FRCM composites comprising glass and carbon textiles subjected to the same conditionings, collected from the literature. The results show only limited reductions in the tensile properties, even after long exposure to aggressive environments.

2.
Materials (Basel) ; 14(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683763

RESUMO

In recent years, inorganic-matrix reinforcement systems, such as fiber-reinforced cementitious matrix (FRCM), composite-reinforced mortars (CRM), and steel-reinforced grout (SRG), have been increasingly used to retrofit and strengthen existing masonry and concrete structures. Despite their good short-term properties, limited information is available on their long-term behavior. In this paper, the long-term bond behavior of some FRCM, CRM, and SRG systems bonded to masonry substrates is investigated. Namely, the results of single-lap direct shear tests of FRCM-, CRM-, and SRG-masonry joints subjected to wet-dry cycles are provided and discussed. First, FRCM composites comprising carbon, polyparaphenylene benzobisoxazole (PBO), and alkali-resistant (AR) glass textiles embedded within cement-based matrices, are considered. Then, CRM and SRG systems made of an AR glass composite grid embedded with natural hydraulic lime (NHL) and of unidirectional steel cords embedded within the same lime matrix, respectively, are studied. For each type of composite, six specimens are exposed to 50 wet-dry cycles prior to testing. The results are compared with those of nominally equal unconditioned specimens previously tested by the authors. This comparison shows a shifting of the failure mode for some composites from debonding at the matrix-fiber interface to debonding at the matrix-substrate interface. Furthermore, the average peak stress of all systems decreases except for the carbon FRCM and the CRM, for which it remains unaltered or increases.

3.
Materials (Basel) ; 14(18)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34576636

RESUMO

This paper describes methods, procedures, and results of cyclic loading tensile tests of a PBO FRCM composite. The main objective of the research is the evaluation of the effect of low- and high-cycle fatigue on the composite tensile properties, namely the tensile strength, ultimate tensile strain, and slope of the stress-strain curve. To this end, low- and high-cycle fatigue tests and post-fatigue tests were performed to study the composite behavior when subjected to cyclic loading and after being subjected to a different number of cycles. The results showed that the mean stress and amplitude of fatigue cycles affect the specimen behavior and mode of failure. In high-cycle fatigue tests, failure occurred due to progressive fiber filaments rupture. In low-cycle fatigue, the stress-strain response and failure mode were similar to those observed in quasi-static tensile tests. The results obtained provide important information on the fatigue behavior of PBO FRCM coupons, showing the need for further studies to better understand the behavior of existing concrete and masonry members strengthened with FRCM composites and subjected to cyclic loading.

4.
BMC Pulm Med ; 21(1): 241, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34273962

RESUMO

INTRODUCTION: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. METHOD: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). RESULTS: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. CONCLUSION: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization.


Assuntos
COVID-19/fisiopatologia , Pneumonia Viral/fisiopatologia , Idoso , Gasometria , COVID-19/complicações , Monóxido de Carbono , Dispneia/virologia , Tolerância ao Exercício , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Pressão Parcial , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Capacidade de Difusão Pulmonar , Volume Residual , SARS-CoV-2 , Índice de Gravidade de Doença , Teste de Caminhada
5.
EClinicalMedicine ; 27: 100553, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33043284

RESUMO

BACKGROUND: Interleukin-6 signal blockade showed preliminary beneficial effects in treating inflammatory response against SARS-CoV-2 leading to severe respiratory distress. Herein we describe the outcomes of off-label intravenous use of Sarilumab in severe SARS-CoV-2-related pneumonia. METHODS: 53 patients with SARS-CoV-2 severe pneumonia received intravenous Sarilumab; pulmonary function improvement or Intensive Care Unit (ICU) admission rate in medical wards, live discharge rate in ICU treated patients and safety profile were recorded. Sarilumab 400 mg was administered intravenously on day 1, with eventual additional infusion based on clinical judgement, and patients were followed for at least 14 days, unless previously discharged or dead. FINDINGS: Of the 53 SARS-CoV-2pos patients receiving Sarilumab, 39(73·6%) were treated in medical wards [66·7% with a single infusion; median PaO2/FiO2:146(IQR:120-212)] while 14(26·4%) in ICU [92·6% with a second infusion; median PaO2/FiO2: 112(IQR:100-141.5)].Within the medical wards, 7(17·9%) required ICU admission, 4 of whom were re-admitted to the ward within 5-8 days. At 19 days median follow-up, 89·7% of medical inpatients significantly improved (46·1% after 24 h, 61·5% after 3 days), 70·6% were discharged from the hospital and 85·7% no longer needed oxygen therapy. Within patients receiving Sarilumab in ICU, 64·2% were discharged from ICU to the ward and 35·8% were still alive at the last follow-up. Overall mortality rate was 5·7%. INTERPRETATION: IL-6R inhibition appears to be a potential treatment strategy for severe SARS-CoV-2 pneumonia and intravenous Sarilumab seems a promising treatment approach showing, in the short term, an important clinical outcome and good safety.

6.
Lung ; 198(3): 429-440, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32415523

RESUMO

Fibrotic hypersensitivity pneumonitis is a complex interstitial lung disease that is not entirely understood. In its chronic and fibrotic form, hypersensitivity pneumonitis is one of the main mimickers of idiopathic pulmonary fibrosis (IPF). Distinguishing between these two conditions is challenging but is of particular clinical relevance. Two approved therapies are available for IPF, and a considerable number of clinical trials are now exploring newer pharmacological options. This impressive research effort is a consequence of new pathogenetic understanding, updated diagnostic criteria and a long history of pharmacological trials. Conversely, current knowledge gaps on pathogenesis of chronic hypersensitivity pneumonitis, coupled with lack of validated diagnostic criteria, make the management of this disease an unsolved clinical challenge. This also reflects the paucity of therapeutic clinical trials in this field. In this review, we describe the current evidence and the possible future options to approach this complex disease.


Assuntos
Alveolite Alérgica Extrínseca/diagnóstico , Gerenciamento Clínico , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Alveolite Alérgica Extrínseca/terapia , Diagnóstico Diferencial , Humanos
7.
Materials (Basel) ; 13(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455652

RESUMO

Several reinforced-concrete (RC) structural elements are subjected to cyclic load, such those employed in highway and railroad bridges and viaducts. The durability of these elements may be reduced as a consequence of fatigue, which mainly affects the steel reinforcement. The use of externally bonded (EB) fiber-reinforced cementitious matrix (FRCM) composites allows the moment capacity to be shared by the internal reinforcement and the EB composite, thus increasing the fatigue life of the strengthened RC member. The effectiveness of EB FRCM composites is related to the composite bond properties. However, limited research is currently available on the effect of fatigue on the bond behavior of FRCM-substrate joints. This study provides first the state of the art on the fatigue behavior of different FRCM composites bonded to a concrete substrate. Then, the fatigue bond behavior of a polyparaphenylene benzo-bisoxazole (PBO) FRCM is experimentally investigated using a modified beam test set-up. The use of this set-up provided information on the effect of fiber-matrix interface shear and normal stresses on the specimen fatigue bond behavior. The results showed that fatigue loading may induce premature debonding at the matrix-fiber interface and that stresses normal to the interface reduce the specimen fatigue life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA