Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 26(4): 876-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25145928

RESUMO

In CKD, uremic solutes may induce endothelial dysfunction, inflammation, and oxidative stress, leading to increased cardiovascular risk. We investigated whether the uremic solute indole-3 acetic acid (IAA) predicts clinical outcomes in patients with CKD and has prooxidant and proinflammatory effects. We studied 120 patients with CKD. During the median study period of 966 days, 29 patients died and 35 experienced a major cardiovascular event. Kaplan-Meier analysis revealed that mortality and cardiovascular events were significantly higher in the higher IAA group (IAA>3.73 µM) than in the lower IAA group (IAA<3.73 µM). Multivariate Cox regression analysis demonstrated that serum IAA was a significant predictor of mortality and cardiovascular events after adjustments for age and sex; cholesterol, systolic BP, and smoking; C-reactive protein, phosphate, body mass index, and albumin; diastolic BP and history of cardiovascular disease; and uremic toxins p-cresyl sulfate and indoxyl sulfate. Notably, IAA level remained predictive of mortality when adjusted for CKD stage. IAA levels were positively correlated with markers of inflammation and oxidative stress: C-reactive protein and malondialdehyde, respectively. In cultured human endothelial cells, IAA activated an inflammatory nongenomic aryl hydrocarbon receptor (AhR)/p38MAPK/NF-κB pathway that induced the proinflammatory enzyme cyclooxygenase-2. Additionally, IAA increased production of endothelial reactive oxygen species. In conclusion, serum IAA may be an independent predictor of mortality and cardiovascular events in patients with CKD. In vitro, IAA induces endothelial inflammation and oxidative stress and activates an inflammatory AhR/p38MAPK/NF-κB pathway.


Assuntos
Doenças Cardiovasculares/sangue , Endotélio Vascular/metabolismo , Ácidos Indolacéticos/sangue , Estresse Oxidativo , Insuficiência Renal Crônica/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/etiologia , Ciclo-Oxigenase 2/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/mortalidade , Transdução de Sinais , Uremia/complicações , Adulto Jovem
2.
Kidney Int ; 84(4): 733-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636172

RESUMO

In chronic kidney disease (CKD), uremic solutes accumulate in blood and tissues. These compounds probably contribute to the marked increase in cardiovascular risk during the progression of CKD. The uremic solutes indoxyl sulfate and indole-3-acetic acid (IAA) are particularly deleterious for endothelial cells. Here we performed microarray and comparative PCR analyses to identify genes in endothelial cells targeted by these two uremic solutes. We found an increase in endothelial expression of tissue factor in response to indoxyl sulfate and IAA and upregulation of eight genes regulated by the transcription factor aryl hydrocarbon receptor (AHR). The suggestion by microarray analysis of an involvement of AHR in tissue factor production was confirmed by siRNA inhibition and the indirect AHR inhibitor geldanamycin. These observations were extended to peripheral blood mononuclear cells. Tissue factor expression and activity were also increased by AHR agonist dioxin. Finally, we measured circulating tissue factor concentration and activity in healthy control subjects and in patients with CKD (stages 3-5d), and found that each was elevated in patients with CKD. Circulating tissue factor levels were positively correlated with plasma indoxyl sulfate and IAA. Thus, indolic uremic solutes increase tissue factor production in endothelial and peripheral blood mononuclear cells by AHR activation, evoking a 'dioxin-like' effect. This newly described mechanism of uremic solute toxicity may help understand the high cardiovascular risk of CKD patients.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Indicã/farmacologia , Ácidos Indolacéticos/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tromboplastina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzoquinonas/farmacologia , Estudos de Casos e Controles , Células Cultivadas , Dioxinas/farmacologia , Endotélio Vascular/citologia , Feminino , Humanos , Técnicas In Vitro , Indicã/metabolismo , Ácidos Indolacéticos/metabolismo , Lactamas Macrocíclicas/farmacologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais/fisiologia , Análise Serial de Tecidos , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(23): 2281-6, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21727042

RESUMO

During chronic kidney disease (CKD), solutes called uremic solutes, accumulate in blood and tissues of patients. We developed an HPLC method for the simultaneous determination of several uremic solutes of clinical interest in biological fluids: phenol (Pol), indole-3-acetic acid (3-IAA), p-cresol (p-C), indoxyl sulfate (3-INDS) and p-cresol sulfate (p-CS). These solutes were separated by ion-pairing HPLC using an isocratic flow and quantified with a fluorescence detection. The mean serum concentrations of 3-IAA, 3-INDS and p-CS were 2.12, 1.03 and 13.03 µM respectively in healthy subjects, 3.21, 17.45 and 73.47 µM in non hemodialyzed stage 3-5 CKD patients and 5.9, 81.04 and 120.54 µM in hemodialyzed patients (stage 5D). We found no Pol and no p-C in any population. The limits of quantification for 3-IAA, 3-INDS, and p-CS were 0.83, 0.72, and 3.2 µM respectively. The within-day CVs were between 1.23 and 3.12% for 3-IAA, 0.98 and 2% for 3-INDS, and 1.25 and 3.01% for p-CS. The between-day CVs were between 1.78 and 5.48% for 3-IAA, 1.45 and 4.54% for 3-INDS, and 1.19 and 6.36% for p-CS. This HPLC method permits the simultaneous and quick quantification of several uremic solutes for daily analysis of large numbers of samples.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cresóis/sangue , Indicã/sangue , Ácidos Indolacéticos/sangue , Falência Renal Crônica/sangue , Fenol/sangue , Fenóis/sangue , Ésteres do Ácido Sulfúrico/sangue , Uremia/sangue , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Phys Chem B ; 114(4): 1661-5, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20067224

RESUMO

p-Cresylsulfate, a metabolite of p-cresol, is reported as prototypic protein-bound uremic toxin, inefficiently removed by haemodialysis. The binding between p-cresylsulfate or p-cresol and human serum albumin was studied using microcalorimetry. The results confirm that the two molecules are protein-bound. However, the affinity of p-cresylsulfate and p-cresol toward human serum albumin is moderate at 25 degrees C and becomes relatively weak at physiological temperature, 37 degrees C. The binding principally involves van der Waals type interactions, and the binding sites of the two molecules are the same or very close. The low fraction of bound toxin (13-20%) appears to be insufficient to link strong binding to poor removal of this toxin by hemodialysis.


Assuntos
Cresóis/química , Albumina Sérica/química , Sítios de Ligação , Calorimetria , Cresóis/metabolismo , Humanos , Ligação Proteica , Diálise Renal , Albumina Sérica/metabolismo , Ésteres do Ácido Sulfúrico , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA