Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439086

RESUMO

Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.

2.
Cancers (Basel) ; 12(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973205

RESUMO

Cancer cells secrete small extracellular vesicles (sEVs) that are involved in the remodeling of tumor microenvironment (TME) and can promote tumor progression. The role of sEVs and their molecular key players in colon cancer stem cells differentiation are poorly understood. This study aimed to analyze the role and content of sEVs released during the differentiation of colorectal cancer stem cells. Here we show that sEVs secretion during colon cancer stem cells differentiation is partially controlled by CD147, a well-known player involved in colon cancer tumorigenesis. CD147 + sEVs activate a signaling cascade in recipient cells inducing molecular invasive features in colon cancer cells. CD147 knockdown as well as anti-CD147 antibodies impaired sEVs release and downstream effects on recipient cells and blocking multivesicular body maturation prevented sEVs release during the differentiation. Our findings reveal a functional role of CD147 in promoting sEVs release during the differentiation of colon cancer stem cells and in triggering cellular changes in recipient cells.

3.
Cancers (Basel) ; 11(8)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366089

RESUMO

PTEN is one of the most frequently inactivated tumor suppressor genes in cancer. Loss or variation in PTEN gene/protein levels is commonly observed in a broad spectrum of human cancers, while germline PTEN mutations cause inherited syndromes that lead to increased risk of tumors. PTEN restrains tumorigenesis through different mechanisms ranging from phosphatase-dependent and independent activities, subcellular localization and protein interaction, modulating a broad array of cellular functions including growth, proliferation, survival, DNA repair, and cell motility. The main target of PTEN phosphatase activity is one of the most significant cell growth and pro-survival signaling pathway in cancer: PI3K/AKT/mTOR. Several shreds of evidence shed light on the critical role of PTEN in normal and cancer stem cells (CSCs) homeostasis, with its loss fostering the CSC compartment in both solid and hematologic malignancies. CSCs are responsible for tumor propagation, metastatic spread, resistance to therapy, and relapse. Thus, understanding how alterations of PTEN levels affect CSC hallmarks could be crucial for the development of successful therapeutic approaches. Here, we discuss the most significant findings on PTEN-mediated control of CSC state. We aim to unravel the role of PTEN in the regulation of key mechanisms specific for CSCs, such as self-renewal, quiescence/cell cycle, Epithelial-to-Mesenchymal-Transition (EMT), with a particular focus on PTEN-based therapy resistance mechanisms and their exploitation for novel therapeutic approaches in cancer treatment.

4.
Am J Pathol ; 187(7): 1633-1647, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28619275

RESUMO

Exosomes are involved in intercellular communication. We previously reported that sodium butyrate-induced differentiation of HT29 colon cancer cells is associated with a reduced CD133 expression. Herein, we analyzed the role of exosomes in the differentiation of HT29 cells. Exosomes were prepared using ultracentrifugation. Gene expression levels were evaluated by real-time PCR. The cell proliferation rate was assessed by MTT assay and with the electric cell-substrate impedance sensing system, whereas cell motility was assessed using the scratch test and confocal microscopy. Sodium butyrate-induced differentiation of HT29 and Caco-2 cells increased the levels of released exosomes and their expression of CD133. Cell differentiation and the decrease of cellular CD133 expression levels were prevented by blocking multivesicular body maturation. Exosomes released by HT29 differentiating cells carried increased levels of miRNAs, induced an increased proliferation and motility of both colon cancer cells and normal fibroblasts, increased the colony-forming efficiency of cancer cells, and reduced the sodium butyrate-induced differentiation of HT29 cells. Such effects were associated with an increased phosphorylation level of both Src and extracellular signal regulated kinase proteins and with an increased expression of epithelial-to-mesenchymal transition-related genes. Release of exosomes is affected by differentiation of colon cancer cells; exosomes might be used by differentiating cells to get rid of components that are no longer necessary but might continue to exert their effects on recipient cells.


Assuntos
Antígeno AC133/metabolismo , Neoplasias do Colo/metabolismo , Exossomos/metabolismo , Antígeno AC133/genética , Ácido Butírico/efeitos adversos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Exossomos/genética , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA