Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739438

RESUMO

The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.


Assuntos
Ciclo do Ácido Cítrico , Glicólise , Fosforilação Oxidativa , Retina , Animais , Camundongos , Retina/metabolismo , Metabolismo Energético , Metabolômica , Epitélio Pigmentado da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Cones/metabolismo
2.
J Comp Neurol ; 528(6): 989-1002, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31674018

RESUMO

One of the tissues of the central nervous system most affected by diabetes is the retina. Despite a growing understanding of the biochemical processes involved in glucose toxicity, little is known about the physiological consequences of chronic high glucose (HG) on individual neurons and neuronal circuits. Electroretinogram recordings suggest that retinal bipolar cells (BCs), which filter and transmit photoreceptor output to the inner retina, are among the first cells affected by diabetic conditions, and may therefore serve as sensitive early biomarkers for incipient neuronal damage caused in diabetes. Here, we comparatively assessed retinal integrity, calcium responses, and the electrophysiological profiles of specific BC types of mouse and rat organotypic retinal explants after 1 to 3 weeks in tissue culture, under moderate glucose (MG) and HG conditions. While the retinal layers of both rodent species displayed a progressively reduced thickness in culture, BCs retained their electrophysiological profiles and remained morphologically identifiable for up to 2 weeks. Responses to glutamate and endogenous inhibitory responses were routinely observed, indicating that the retinal circuitry remained intact during this period. Significant physiological differences between MG and HG conditions were evident in calcium signals and in the time course of responses to glutamate, but the voltage-gated current profiles of BCs displayed only minor variations. Overall, rat retina appeared slightly more sensitive to HG levels compared with mouse. In conclusion, electrophysiological analysis of neuronal function in rodent retinal explants is useful for the study of early damage due to HG neurotoxicity.


Assuntos
Glucose/toxicidade , Síndromes Neurotóxicas/fisiopatologia , Retina/efeitos dos fármacos , Retina/fisiopatologia , Animais , Retinopatia Diabética/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
3.
J Med Entomol ; 54(5): 1435-1439, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499023

RESUMO

Spiders of the family Sicariidae pose a serious threat to affected populations, and Loxosceles laeta (Nicolet) is considered the most venomous species. Development of nontoxic olfaction-based spider repellents or traps is hindered by a current lack of knowledge regarding olfactory system function in arachnids. In the present study, general plant odorants and conspecific odors were tested for behavioral responses in L. laeta. Although general odorants triggered neither attraction nor aversion, conspecific odor of the opposite sex caused aversion in females, and attraction in males. These results support the presence of a specific olfactory system for the detection of conspecifics in L. laeta, but suggest the absence of a broadly tuned system for general odorant detection in this species.


Assuntos
Quimiotaxia , Odorantes , Percepção Olfatória , Aranhas/fisiologia , Animais , Chile , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA