Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8015): 166-173, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778114

RESUMO

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Assuntos
Transdiferenciação Celular , Hepatócitos , Fígado , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Análise de Célula Única , Serina-Treonina Quinases TOR , Humanos , Hepatócitos/metabolismo , Hepatócitos/citologia , Hepatócitos/patologia , Fígado/patologia , Fígado/metabolismo , Fígado/citologia , Doença Crônica , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Organoides/metabolismo , Organoides/patologia , Plasticidade Celular , Regeneração Hepática , Insulina/metabolismo , Masculino , Hepatopatias/patologia , Hepatopatias/metabolismo , RNA-Seq , Feminino , Progressão da Doença , Biópsia , Sistema Biliar/citologia , Sistema Biliar/metabolismo , Sistema Biliar/patologia , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/patologia
2.
PLoS One ; 18(9): e0290429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656702

RESUMO

The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment.


Assuntos
Brassica napus , Brassica napus/genética , Teorema de Bayes , Melhoramento Vegetal , Sementes , Causalidade
3.
Cancer Cell ; 41(7): 1242-1260.e6, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267953

RESUMO

The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.


Assuntos
Senescência Celular , Neoplasias Pulmonares , Idoso , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinogênese/metabolismo , Senescência Celular/genética , Células Endoteliais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
4.
Quant Plant Biol ; 2: e4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37077206

RESUMO

Comparative transcriptomics can be used to translate an understanding of gene regulatory networks from model systems to less studied species. Here, we use RNA-Seq to determine and compare gene expression dynamics through the floral transition in the model species Arabidopsis thaliana and the closely related crop Brassica rapa. We find that different curve registration functions are required for different genes, indicating that there is no single common 'developmental time' between Arabidopsis and B. rapa. A detailed comparison between Arabidopsis and B. rapa and between two B. rapa accessions reveals different modes of regulation of the key floral integrator SOC1, and that the floral transition in the B. rapa accessions is triggered by different pathways. Our study adds to the mechanistic understanding of the regulatory network of flowering time in rapid cycling B. rapa and highlights the importance of registration methods for the comparison of developmental gene expression data.

5.
New Phytol ; 229(6): 3534-3548, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33289112

RESUMO

Flowering time is a key adaptive and agronomic trait. In Arabidopsis, natural variation in expression levels of the floral repressor FLOWERING LOCUS C (FLC) leads to differences in vernalization. In Brassica napus there are nine copies of FLC. Here, we study how these multiple FLC paralogues determine vernalization requirement as a system. We collected transcriptome time series for Brassica napus spring, winter, semi-winter, and Siberian kale crop types. Modelling was used to link FLC expression dynamics to floral response following vernalization. We show that relaxed selection pressure has allowed expression of FLC paralogues to diverge, resulting in variation of FLC expression during cold treatment between paralogues and accessions. We find that total FLC expression dynamics best explains differences in cold requirement between cultivars, rather than expression of specific FLC paralogues. The combination of multiple FLC paralogues with different expression dynamics leads to rich behaviour in response to cold and a wide range of vernalization requirements in B. napus. We find evidence for different strategies to determine the response to cold in existing winter rapeseed accessions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica napus , Brassica rapa , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo
6.
Curr Biol ; 29(24): 4300-4306.e2, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31813609

RESUMO

Plants with winter annual life history germinate in summer or autumn and require a period of prolonged winter cold to initiate flowering, known as vernalization. In the Brassicaceae, the requirement for vernalization is conferred by high expression of orthologs of the FLOWERING LOCUS C (FLC) gene, the expression of which is known to be silenced by prolonged exposure to winter-like temperatures [1]. Based on a wealth of vernalization experiments, typically carried out in the range of 5°C-10°C, we would expect field environments during winter to induce flowering in crops with winter annual life history. Here, we show that, in the case of winter oilseed rape, expression of multiple FLC orthologs declines not during winter but predominantly during October when the average air temperature is 10°C-15°C. We further demonstrate that plants proceed through the floral transition in early November and overwinter as inflorescence meristems, which complete floral development in spring. To validate the importance of pre-winter temperatures in flowering time control, we artificially simulated climate warming in field trial plots in October. We found that increasing the temperature by 5°C in October results in raised FLC expression and delays the floral transition by 3 weeks but only has a mild effect on flowering date the following spring. Our work shows that winter annuals overwinter as a floral bud in a manner that resembles perennials and highlights the importance of studying signaling events in the field for understanding how plants transition to flowering under real environmental conditions.


Assuntos
Brassica napus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crescimento & desenvolvimento , Brassica napus/genética , Temperatura Baixa , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Estações do Ano
7.
Plant Cell ; 28(3): 610-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26952566

RESUMO

Recently, a large population of mRNA was shown to be able to travel between plant organs via sieve elements as a putative long-distance signaling molecule. However, a mechanistic basis by which transcripts are selected for transport has not yet been identified. Here, we show that experimental mRNA mobility data in Arabidopsis can be explained by transcript abundance and half-life. This suggests that the majority of identified mobile transcripts can be accounted for by non-sequence-specific movement of mRNA from companion cells into sieve elements.


Assuntos
RNA Mensageiro/metabolismo , Arabidopsis/genética , Transporte Biológico , Meia-Vida , Simulação de Dinâmica Molecular , RNA Mensageiro/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo
8.
Plant Sci ; 241: 1-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26706053

RESUMO

Sulfur is an essential mineral nutrient for plants, therefore, the pathways of its uptake and assimilation have been extensively studied. Great progress has been made in elucidation of the individual genes and enzymes and their regulation. Sulfur assimilation has been intensively investigated by -omics technologies and has been target of several genome wide genetic approaches. This brought a significant step in our understanding of the regulation of the pathway and its integration in cellular metabolism. However, the large amount of information derived from other experiments not directly targeting sulfur has also brought new and exciting insights into processes affecting sulfur homeostasis. In this review we will integrate the findings of the targeted experiments with those that brought unintentional progress in sulfur research, and will discuss how to synthesize the large amount of information available in various repositories into a meaningful dissection of the regulation of a specific metabolic pathway. We then speculate how this might be used to further advance knowledge on control of sulfur metabolism and what are the main questions to be answered.


Assuntos
Plantas/metabolismo , Enxofre/metabolismo
9.
Front Plant Sci ; 5: 646, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477892

RESUMO

The key role of sulfur metabolites in response to biotic and abiotic stress in plants, as well as their importance in diet and health has led to a significant interest and effort in trying to understand and manipulate the production of relevant compounds. Metabolic engineering utilizes a set of theoretical tools to help rationally design modifications that enhance the production of a desired metabolite. Such approaches have proven their value in bacterial systems, however, the paucity of success stories to date in plants, suggests that challenges remain. Here, we review the most commonly used methods for understanding metabolic flux, focusing on the sulfur assimilatory pathway. We highlight known issues with both experimental and theoretical approaches, as well as presenting recent methods for integrating different modeling strategies, and progress toward an understanding of flux at the whole plant level.

10.
Nitric Oxide ; 41: 72-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24582856

RESUMO

Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Plantas/metabolismo , Cisteína , Transdução de Sinais
11.
FEBS Lett ; 588(7): 1116-21, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24583010

RESUMO

Sulfate assimilation pathway is highly responsive to changes in environment, but the mechanisms of such regulation are only slowly beginning to unravel. Here we show evidence that PHYTOCHROME AND FLOWERING TIME 1 (PFT1) may be another component of the sulfate assimilation regulatory circuit. Transcriptional regulation by light of the key enzyme of sulfate assimilation, adenosine 5'phosphosulfate (APS) reductase, is disturbed in pft1-2 mutants. PFT1, however, affects also APS reductase enzyme activity, flux through the sulfate assimilation pathway and accumulation of glutathione. In addition, our data suggest a possible interplay of PFT1 with another transcription factor, HY5, in regulation of APS reductase by light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Nucleares/metabolismo , Sulfatos/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA , Indução Enzimática/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glutationa/metabolismo , Proteínas Nucleares/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Sulfato Adenililtransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA