Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2633: 163-184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36853464

RESUMO

RNA performs a wide variety of vital cellular functions. These functions typically require interactions with other biological macromolecules, often as part of an intricate communication network. High-throughput techniques capable of analyzing RNA-based interactions are therefore essential. Functional-RNA arrays address this need, providing the capability of performing hundreds of miniature assays in parallel. Here we describe a method to generate functional-RNA arrays using in vitro transcription of a DNA template array and in situ RNA capture. We also suggest how functional-RNA arrays could be applied to investigating RNA-RNA interactions.


Assuntos
RNA não Traduzido , RNA , RNA/genética , Bioensaio , Replicação do DNA
2.
Front Microbiol ; 13: 1017278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267174

RESUMO

The RNA chaperone Hfq promotes the association of small RNAs (sRNAs) with cognate mRNAs, controlling the expression of bacterial phenotype. Actinobacillus pleuropneumoniae hfq mutants strains are attenuated for virulence in pigs, impaired in the ability to form biofilms, and more susceptible to stress, but knowledge of the extent of sRNA involvement is limited. Here, using A. pleuropneumoniae strain MIDG2331 (serovar 8), 14 sRNAs were identified by co-immunoprecipitation with Hfq and the expression of eight, identified as trans-acting sRNAs, were confirmed by Northern blotting. We focused on one of these sRNAs, named Rna01, containing a putative promoter for RpoE (stress regulon) recognition. Knockout mutants of rna01 and a double knockout mutant of rna01 and hfq, both had decreased biofilm formation and hemolytic activity, attenuation for virulence in Galleria mellonella, altered stress susceptibility, and an altered outer membrane protein profile. Rna01 affected extracellular vesicle production, size and toxicity in G. mellonella. qRT-PCR analysis of rna01 and putative cognate mRNA targets indicated that Rna01 is associated with the extracytoplasmic stress response. This work increases our understanding of the multilayered and complex nature of the influence of Hfq-dependent sRNAs on the physiology and virulence of A. pleuropneumoniae.

3.
Molecules ; 26(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200016

RESUMO

The increase in antibacterial resistance is a serious challenge for both the health and defence sectors and there is a need for both novel antibacterial targets and antibacterial strategies. RNA degradation and ribonucleases, such as the essential endoribonuclease RNase E, encoded by the rne gene, are emerging as potential antibacterial targets while antisense oligonucleotides may provide alternative antibacterial strategies. As rne mRNA has not been previously targeted using an antisense approach, we decided to explore using antisense oligonucleotides to target the translation initiation region of the Escherichia coli rne mRNA. Antisense oligonucleotides were rationally designed and were synthesised as locked nucleic acid (LNA) gapmers to enable inhibition of rne mRNA translation through two mechanisms. Either LNA gapmer binding could sterically block translation and/or LNA gapmer binding could facilitate RNase H-mediated cleavage of the rne mRNA. This may prove to be an advantage over the majority of previous antibacterial antisense oligonucleotide approaches which used oligonucleotide chemistries that restrict the mode-of-action of the antisense oligonucleotide to steric blocking of translation. Using an electrophoretic mobility shift assay, we demonstrate that the LNA gapmers bind to the translation initiation region of E. coli rne mRNA. We then use a cell-free transcription translation reporter assay to show that this binding is capable of inhibiting translation. Finally, in an in vitro RNase H cleavage assay, the LNA gapmers facilitate RNase H-mediated mRNA cleavage. Although the challenges of antisense oligonucleotide delivery remain to be addressed, overall, this work lays the foundations for the development of a novel antibacterial strategy targeting rne mRNA with antisense oligonucleotides.


Assuntos
Antibacterianos/farmacologia , Endorribonucleases/genética , Escherichia coli/enzimologia , Oligonucleotídeos/farmacologia , Sistema Livre de Células , Endorribonucleases/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Oligonucleotídeos/síntese química , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA Mensageiro/antagonistas & inibidores
4.
ACS Synth Biol ; 10(8): 1847-1858, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34283568

RESUMO

Regulatory RNA-based interactions are critical for coordinating gene expression and are increasingly being targeted in synthetic biology, antimicrobial, and therapeutic fields. Bacterial trans-encoded small RNAs (sRNAs) regulate the translation and/or stability of mRNA targets through base-pairing interactions. These interactions are often integral to complex gene circuits which coordinate critical bacterial processes. The ability to predictably modulate these gene circuits has potential for reprogramming gene expression for synthetic biology and antibacterial purposes. Here, we present a novel pipeline for targeting such RNA-based interactions with antisense oligonucleotides (ASOs) in order to reprogram gene expression. As proof-of-concept, we selected sRNA-mRNA interactions that are central to the Vibrio cholerae quorum sensing pathway, required for V. cholerae pathogenesis, as a regulatory RNA-based interaction input. We rationally designed anti-sRNA ASOs to target the sRNAs and synthesized them as peptide nucleic acids (PNAs). Next, we devised an RNA array-based interaction assay to allow screening of the anti-sRNA ASOs in vitro. Finally, an Escherichia coli-based gene expression reporter assay was developed and used to validate anti-sRNA ASO regulatory activity in a cellular environment. The output from the pipeline was an anti-sRNA ASO that targets sRNAs to inhibit sRNA-mRNA interactions and modulate gene expression. This anti-sRNA ASO has potential for reprogramming gene expression for synthetic biology and/or antibacterial purposes. We anticipate that this pipeline will find widespread use in fields targeting RNA-based interactions as modulators of gene expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Oligodesoxirribonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , RNA Bacteriano/biossíntese , Vibrio cholerae , RNA Bacteriano/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
5.
Molecules ; 26(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923034

RESUMO

Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.


Assuntos
DNA Ligases/antagonistas & inibidores , Inibidores Enzimáticos/isolamento & purificação , Escherichia coli/enzimologia , Sítios de Ligação/efeitos dos fármacos , DNA Ligases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Simulação de Acoplamento Molecular
6.
Biochem Biophys Rep ; 23: 100773, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32548313

RESUMO

Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E.

7.
Sci Rep ; 9(1): 7952, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138855

RESUMO

Regulation of gene expression through processing and turnover of RNA is a key mechanism that allows bacteria to rapidly adapt to changing environmental conditions. Consequently, RNA degrading enzymes (ribonucleases; RNases) such as the endoribonuclease RNase E, frequently play critical roles in pathogenic bacterial virulence and are potential antibacterial targets. RNase E consists of a highly conserved catalytic domain and a variable non-catalytic domain that functions as the structural scaffold for the multienzyme degradosome complex. Despite conservation of the catalytic domain, a recent study identified differences in the response of RNase E homologues from different species to the same inhibitory compound(s). While RNase E from Escherichia coli has been well-characterised, far less is known about RNase E homologues from other bacterial species. In this study, we structurally and biochemically characterise the RNase E catalytic domains from four pathogenic bacteria: Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei and Acinetobacter baumannii, with a view to exploiting RNase E as an antibacterial target. Bioinformatics, small-angle x-ray scattering and biochemical RNA cleavage assays reveal globally similar structural and catalytic properties. Surprisingly, subtle species-specific differences in both structure and substrate specificity were also identified that may be important for the development of effective antibacterial drugs targeting RNase E.


Assuntos
Acinetobacter baumannii/enzimologia , Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Endorribonucleases/química , Francisella tularensis/enzimologia , Yersinia pestis/enzimologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Clonagem Molecular , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/química , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato , Virulência , Yersinia pestis/genética , Yersinia pestis/patogenicidade
8.
Methods ; 167: 39-53, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31055072

RESUMO

The discovery and engineering of more and more functions of RNA has highlighted the utility of RNA-targeting small molecules. Recently, several fluorogen-binding RNA aptamers have been developed that have been applied to live cell imaging of RNA and metabolites as RNA tags or biosensors, respectively. Although the design and application of these fluorogen-binding RNA aptamer-based devices is straightforward in theory, in practice, careful optimisation is required. For this reason, high throughput in vitro screening techniques, capable of quantifying fluorogen-RNA aptamer interactions, would be beneficial. We recently developed a method for generating functional-RNA arrays and demonstrated that they could be used to detect fluorogen-RNA aptamer interactions. Specifically, we were able to visualise the interaction between malachite green and the malachite green-binding aptamer. Here we expand this study to demonstrate that functional-RNA arrays can be used to quantify fluorogen-aptamer interactions. As proof-of-concept, we provide detailed protocols for the production of malachite green-binding RNA aptamer and DFHBI-binding Spinach RNA aptamer arrays. Furthermore, we discuss the potential utility of the technology to fluorogen-binding RNA aptamers, including application as a molecular biosensor platform. We anticipate that functional-RNA array technology will be beneficial for a wide variety of biological disciplines.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , RNA/química , Bibliotecas de Moléculas Pequenas/farmacologia , Corantes Fluorescentes/química , Humanos , RNA/efeitos dos fármacos , Corantes de Rosanilina/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação
9.
ACS Synth Biol ; 8(2): 207-215, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30682244

RESUMO

The development of programmable regulators that precisely and predictably control gene expression is a major goal of synthetic biology. Consequently, rapid high-throughput biochemical methods capable of quantitatively analyzing all components of gene expression would be of value in the characterization and optimization of regulator performance. In this study we demonstrate a novel application of RNA arrays, involving the production of reporter-protein arrays, to gene expression analysis. This method enables simultaneous quantification of both the transcription and post-transcription/translation components of gene expression, and it also allows the assessment of the orthogonality of multiple regulators. We use our method to directly compare the performance of a series of previously characterized synthetic post-transcriptional riboregulators, thus demonstrating its utility in the development of synthetic regulatory modules and evaluation of gene expression regulation in general.


Assuntos
Hibridização de Ácido Nucleico/métodos , Análise Serial de Proteínas/métodos , Conformação de Ácido Nucleico , RNA Mensageiro/metabolismo , Biologia Sintética
10.
Nucleic Acids Res ; 46(14): e86, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29846708

RESUMO

We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA-small molecule and RNA-RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.


Assuntos
Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pequeno RNA não Traduzido/análise , Regiões 5' não Traduzidas , Aptâmeros de Nucleotídeos/análise , RNA Bacteriano/análise
11.
Nucleic Acids Res ; 45(8): 4655-4666, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28334892

RESUMO

Ribonucleases play essential roles in all aspects of RNA metabolism, including the coordination of post-transcriptional gene regulation that allows organisms to respond to internal changes and environmental stimuli. However, as inherently destructive enzymes, their activity must be carefully controlled. Recent research exemplifies the repertoire of regulatory strategies employed by ribonucleases. The activity of the phosphorolytic exoribonuclease, polynucleotide phosphorylase (PNPase), has previously been shown to be modulated by the Krebs cycle metabolite citrate in Escherichia coli. Here, we provide evidence for the existence of citrate-mediated inhibition of ribonucleases in all three domains of life. In silico molecular docking studies predict that citrate will bind not only to bacterial PNPases from E. coli and Streptomyces antibioticus, but also PNPase from human mitochondria and the structurally and functionally related archaeal exosome complex from Sulfolobus solfataricus. Critically, we show experimentally that citrate also inhibits the exoribonuclease activity of bacterial, eukaryotic and archaeal PNPase homologues in vitro. Furthermore, bioinformatics data, showing key citrate-binding motifs conserved across a broad range of PNPase homologues, suggests that this regulatory mechanism may be widespread. Overall, our data highlight a communicative link between ribonuclease activity and central metabolism that may have been conserved through the course of evolution.


Assuntos
Ácido Cítrico/química , Escherichia coli/enzimologia , Polirribonucleotídeo Nucleotidiltransferase/química , RNA/química , Streptomyces antibioticus/enzimologia , Sulfolobus solfataricus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Evolução Biológica , Ácido Cítrico/metabolismo , Clonagem Molecular , Biologia Computacional , Sequência Conservada , Escherichia coli/genética , Exossomos/química , Exossomos/enzimologia , Expressão Gênica , Humanos , Cinética , Mitocôndrias/química , Mitocôndrias/enzimologia , Simulação de Acoplamento Molecular , Polirribonucleotídeo Nucleotidiltransferase/genética , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA/metabolismo , Estabilidade de RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Streptomyces antibioticus/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Sulfolobus solfataricus/genética , Termodinâmica
13.
Sci Rep ; 5: 8028, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25619596

RESUMO

The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5'-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Catálise , Domínio Catalítico , Endorribonucleases/antagonistas & inibidores , Proteínas de Escherichia coli/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia
14.
PLoS One ; 8(11): e79142, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244437

RESUMO

Characterisation of RNA and its intermolecular interactions is increasing in importance as the inventory of known RNA functions continues to expand. RNA-RNA interactions are central to post-transcriptional gene regulation mechanisms in bacteria, and the interactions of bacterial small non-coding RNAs (sRNAs) with their mRNA targets are the subject of much current research. The technology of surface plasmon resonance (SPR) is an attractive approach to studying these interactions since it is highly sensitive, and allows interaction measurements to be recorded in real-time. Whilst a number of approaches exist to label RNAs for surface-immobilisation, the method documented here is simple, quick, efficient, and utilises the high-affinity streptavidin-biotin interaction. Specifically, we ligate a biotinylated nucleotide to the 3' end of RNA using T4 RNA ligase. Although this is a previously recognised approach, we have optimised the method by our discovery that the incorporation of four or more adenine nucleotides at the 3' end of the RNA (a poly-A-tail) is required in order to achieve high ligation efficiencies. We use this method within the context of investigating small non-coding RNA (sRNA)-mRNA interactions through the application of surface technologies, including quantitative SPR assays. We first focus on validating the method using the recently characterised Escherichia coli sRNA-mRNA pair, MicA-ompA, specifically demonstrating that the addition of the poly-A-tail to either RNA does not affect its subsequent binding interactions with partner molecules. We then apply this method to investigate the novel interactions of a Vibrio cholerae Qrr sRNA with partner mRNAs, hapR and vca0939; RNA-RNA pairings that are important in mediating pathogenic virulence. The calculated binding parameters allow insights to be drawn regarding sRNA-mRNA interaction mechanisms.


Assuntos
Escherichia coli/química , RNA Bacteriano/química , RNA Mensageiro/química , Pequeno RNA não Traduzido/química , DNA Glicosilases/biossíntese , DNA Glicosilases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Ressonância de Plasmônio de Superfície
15.
RNA ; 19(8): 1089-104, 2013 08.
Artigo em Inglês | MEDLINE | ID: mdl-23804244

RESUMO

OxyS and RprA are two small noncoding RNAs (sRNAs) that modulate the expression of rpoS, encoding an alternative sigma factor that activates transcription of multiple Escherichia coli stress-response genes. While RprA activates rpoS for translation, OxyS down-regulates the transcript. Crucially, the RNA binding protein Hfq is required for both sRNAs to function, although the specific role played by Hfq remains unclear. We have investigated RprA and OxyS interactions with Hfq using biochemical and biophysical approaches. In particular, we have obtained the molecular envelopes of the Hfq-sRNA complexes using small-angle scattering methods, which reveal key molecular details. These data indicate that Hfq does not substantially change shape upon complex formation, whereas the sRNAs do. We link the impact of Hfq binding, and the sRNA structural changes induced, to transcript stability with respect to RNase E degradation. In light of these findings, we discuss the role of Hfq in the opposing regulatory functions played by RprA and OxyS in rpoS regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Fenômenos Biofísicos , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/química , Fator Proteico 1 do Hospedeiro/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Proteínas Repressoras/genética , Espalhamento a Baixo Ângulo , Fator sigma/genética
16.
Nucleic Acids Res ; 41(5): 3386-97, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23361466

RESUMO

MicA is a small non-coding RNA that regulates ompA mRNA translation in Escherichia coli. MicA has an inhibitory function, base pairing to the translation initiation region of target mRNAs through short sequences of complementarity, blocking their ribosome-binding sites. The MicA structure contains two stem loops, which impede its interaction with target mRNAs, and it is thought that the RNA chaperone protein Hfq, known to be involved in MicA regulation of ompA, may structurally remodel MicA to reveal the ompA-binding site for cognate pairing. To further characterize these interactions, we undertook biochemical and biophysical studies using native MicA and a 'stabilized' version, modified to mimic the conformational state of MicA where the ompA-binding site is exposed. Our data corroborate two proposed roles for Hfq: first, to bring both MicA and ompA into close proximity, and second, to restructure MicA to allow exposure of the ompA-binding site for pairing, thereby demonstrating the RNA chaperone function of Hfq. Additionally, at accumulated MicA levels, we identified a Mg(2+)-dependent self-association that occludes the ompA-recognition region. We discuss the potential contribution of an Mg(2+)-mediated conformational switch of MicA for the regulation of MicA function.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Pequeno RNA não Traduzido/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sequência de Bases , Sítios de Ligação , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Escherichia coli/química , Fator Proteico 1 do Hospedeiro/química , Sequências Repetidas Invertidas , Magnésio/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Pequeno RNA não Traduzido/química
17.
Nucleic Acids Res ; 40(20): 10417-31, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22923520

RESUMO

The RNA degradosome is a multi-enzyme assembly that contributes to key processes of RNA metabolism, and it engages numerous partners in serving its varied functional roles. Small domains within the assembly recognize collectively a diverse range of macromolecules, including the core protein components, the cytoplasmic lipid membrane, mRNAs, non-coding regulatory RNAs and precursors of structured RNAs. We present evidence that the degradosome can form a stable complex with the 70S ribosome and polysomes, and we demonstrate the proximity in vivo of ribosomal proteins and the scaffold of the degradosome, RNase E. The principal interactions are mapped to two, independent, RNA-binding domains from RNase E. RhlB, the RNA helicase component of the degradosome, also contributes to ribosome binding, and this is favoured through an activating interaction with RNase E. The catalytic activity of RNase E for processing 9S RNA (the ribosomal 5S RNA precursor) is repressed in the presence of the ribosome, whereas there is little affect on the cleavage of single-stranded substrates mediated by non-coding RNA, suggestings that the enzyme retains capacity to cleave unstructured substrates when associated with the ribosome. We propose that polysomes may act as antennae that enhance the rates of capture of the limited number of degradosomes, so that they become recruited to sites of active translation to act on mRNAs as they become exposed or tagged for degradation.


Assuntos
Endorribonucleases/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Polirribossomos/metabolismo , RNA Helicases/metabolismo , Ribossomos/metabolismo , Sítios de Ligação , Reagentes de Ligações Cruzadas , RNA Helicases DEAD-box/metabolismo , Endorribonucleases/química , Endorribonucleases/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Pequeno RNA não Traduzido/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo
18.
Nucleic Acids Res ; 40(17): 8698-710, 2012 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730296

RESUMO

In Vibrio cholerae, the RNA binding protein and chaperone Hfq (VcHfq) facilitates the pairing of the quorum regulatory RNA (Qrr) small regulatory RNAs (sRNAs) to the 5' untranslated regions of the mRNAs for a number of global regulators that modulate the expression of virulence genes. This Qrr-mediated sRNA circuit is an attractive antimicrobial target, but characterization at the molecular level is required for this to be realized. Here, we investigate the interactions between VcHfq and the Qrr sRNAs using a variety of biochemical and biophysical techniques. We show that the ring-shaped VcHfq hexamer binds the Qrrs with 1:1 stoichiometry through its proximal face, and the molecular envelope of the VcHfq-Qrr complex is experimentally determined from small angle scattering data to present the first structural glimpse of a Hfq-sRNA complex. This structure reveals that the VcHfq protein does not change shape on complex formation but the RNA does, suggesting that a chaperone role for VcHfq is a critical part of the VcHfq-Qrr interaction. Overall, these studies enhance our understanding of VcHfq-Qrr interactions.


Assuntos
Fator Proteico 1 do Hospedeiro/química , Pequeno RNA não Traduzido/química , Vibrio cholerae , Sítios de Ligação , Fator Proteico 1 do Hospedeiro/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , Pequeno RNA não Traduzido/metabolismo , Espalhamento a Baixo Ângulo
19.
J Mol Biol ; 420(1-2): 56-69, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22484176

RESUMO

Hfq is a bacterial RNA binding protein that facilitates small RNA-mediated posttranscriptional gene regulation. In Vibrio cholerae, Hfq and four Hfq-dependent small RNAs are essential for the expression of virulence genes, but little is known about this mechanism at the molecular level. To better understand V. cholerae Hfq structure and mechanism, we characterized the protein, alongside Escherichia coli Hfq for comparison, using biochemical and biophysical techniques. The N-terminal domain (NTD) of the two proteins is highly conserved, but the C-terminal regions (CTRs) vary in both sequence and length. Small-angle X-ray scattering studies showed that both proteins adopt a star-shaped hexameric structure in which the conserved NTD adopts the expected Sm fold while the variable CTR is disordered and extends radially outwards from the folded core. Despite their structural similarity, SDS-PAGE stability assays and collision-induced dissociation mass spectrometry revealed that the V. cholerae hexamer is less stable than that of E. coli. We propose that this is due to minor differences between the intersubunit interface formed by the NTDs and the ability of the E. coli CTR to stabilize this interface. However, based on electrophoretic mobility shift assays, the divergent CTRs do appear to perform a common function with regard to RNA-binding specificity. Overall, the similarities and differences in the fundamental properties of V. cholerae and E. coli Hfq provide insight into their assembly and molecular mechanisms.


Assuntos
Fator Proteico 1 do Hospedeiro/química , Vibrio cholerae/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Escherichia coli , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/fisiologia , Estabilidade Proteica , Estrutura Terciária de Proteína , RNA Bacteriano , Proteínas de Ligação a RNA/química , Homologia Estrutural de Proteína , Vibrio cholerae/patogenicidade , Virulência/genética
20.
J Biol Chem ; 286(16): 14315-23, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21324911

RESUMO

RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiological concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.


Assuntos
Escherichia coli/enzimologia , Regulação Enzimológica da Expressão Gênica , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Sítio Alostérico , Ácido Cítrico/química , Clonagem Molecular , Cristalografia por Raios X/métodos , Deleção de Genes , Metabolômica/métodos , Metais/química , Modelos Químicos , Mutagênese , Análise de Sequência com Séries de Oligonucleotídeos , Polímeros/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA