Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38903070

RESUMO

Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights: Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.

3.
bioRxiv ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37162858

RESUMO

Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.

4.
Immunity ; 56(3): 669-686.e7, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889306

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Antivirais
5.
Nat Commun ; 13(1): 5236, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068229

RESUMO

SIVmac239 infection of macaques is a favored model of human HIV infection. However, the SIVmac239 envelope (Env) trimer structure, glycan occupancy, and the targets and ability of neutralizing antibodies (nAbs) to protect against SIVmac239 remain unknown. Here, we report the isolation of SIVmac239 nAbs that recognize a glycan hole and the V1/V4 loop. A high-resolution structure of a SIVmac239 Env trimer-nAb complex shows many similarities to HIV and SIVcpz Envs, but with distinct V4 features and an extended V1 loop. Moreover, SIVmac239 Env has a higher glycan shield density than HIV Env that may contribute to poor or delayed nAb responses in SIVmac239-infected macaques. Passive transfer of a nAb protects macaques from repeated intravenous SIVmac239 challenge at serum titers comparable to those described for protection of humans against HIV infection. Our results provide structural insights for vaccine design and shed light on antibody-mediated protection in the SIV model.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Polissacarídeos
6.
Sci Transl Med ; 14(657): eabl9605, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947674

RESUMO

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus
7.
Nat Immunol ; 23(6): 960-970, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654851

RESUMO

The emergence of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy. Development of broadly effective coronavirus vaccines that can mitigate these threats is needed. Here, we utilized a targeted donor selection strategy to isolate a large panel of human broadly neutralizing antibodies (bnAbs) to sarbecoviruses. Many of these bnAbs are remarkably effective in neutralizing a diversity of sarbecoviruses and against most SARS-CoV-2 VOCs, including the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor-binding domain (RBD). Consistent with targeting of conserved sites, select RBD bnAbs exhibited protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model in vivo. These bnAbs provide new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and provide a molecular basis for effective design of pan-sarbecovirus vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Humanos , Glicoproteína da Espícula de Coronavírus
8.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291291

RESUMO

Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against coronaviruses that cause severe disease, for anticipating novel pandemic-causing viruses, and to respond more effectively to SARS-CoV-2 variants. The emergence of the Omicron variant of SARS-CoV-2 has illustrated the limitations of solely targeting the receptor binding domain (RBD) of the envelope Spike (S)-protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors that target a conserved S2 region in the fusion machinery on betacoronavirus spikes. Select bnAbs show broad in vivo protection against all three pathogenic betacoronaviruses, SARS-CoV-1, SARS-CoV-2 and MERS-CoV, that have spilled over into humans in the past 20 years to cause severe disease. The bnAbs provide new opportunities for antibody-based interventions and key insights for developing pan-betacoronavirus vaccines.

9.
Sci Transl Med ; 14(637): eabi9215, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133175

RESUMO

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a CoV disease 2019 (COVID-19) convalescent donor that exhibits broad reactivity with human ß-CoVs. Here, we showed that CC40.8 targets the conserved S2 stem helix region of the CoV spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem peptide at 1.6-Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted that CC40.8-like bnAbs are relatively rare in human COVID-19 infection, and therefore, their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais , COVID-19/imunologia , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
10.
bioRxiv ; 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35169804

RESUMO

The emergence of current SARS-CoV-2 variants of concern (VOCs) and potential future spillovers of SARS-like coronaviruses into humans pose a major threat to human health and the global economy 1-7 . Development of broadly effective coronavirus vaccines that can mitigate these threats is needed 8, 9 . Notably, several recent studies have revealed that vaccination of recovered COVID-19 donors results in enhanced nAb responses compared to SARS-CoV-2 infection or vaccination alone 10-13 . Here, we utilized a targeted donor selection strategy to isolate a large panel of broadly neutralizing antibodies (bnAbs) to sarbecoviruses from two such donors. Many of the bnAbs are remarkably effective in neutralization against sarbecoviruses that use ACE2 for viral entry and a substantial fraction also show notable binding to non-ACE2-using sarbecoviruses. The bnAbs are equally effective against most SARS-CoV-2 VOCs and many neutralize the Omicron variant. Neutralization breadth is achieved by bnAb binding to epitopes on a relatively conserved face of the receptor binding domain (RBD) as opposed to strain-specific nAbs to the receptor binding site that are commonly elicited in SARS-CoV-2 infection and vaccination 14-18 . Consistent with targeting of conserved sites, select RBD bnAbs exhibited in vivo protective efficacy against diverse SARS-like coronaviruses in a prophylaxis challenge model. The generation of a large panel of potent bnAbs provides new opportunities and choices for next-generation antibody prophylactic and therapeutic applications and, importantly, provides a molecular basis for effective design of pan-sarbecovirus vaccines.

11.
bioRxiv ; 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821273

RESUMO

Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and, importantly, as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a coronavirus disease 2019 (COVID-19)-convalescent donor that exhibits broad reactivity with human beta-coronaviruses (ß-CoVs). Here, we showed that CC40.8 targets the conserved S2 stem-helix region of the coronavirus spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem-peptide at 1.6 Å resolution and found that the peptide adopted a mainly helical structure. Conserved residues in ß-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted CC40.8-like bnAbs are relatively rare in human COVID-19 infection and therefore their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on ß-CoV spike proteins for protective antibodies that may facilitate the development of pan-ß-CoV vaccines. SUMMARY: A human mAb isolated from a COVID-19 donor defines a protective cross-neutralizing epitope for pan-ß-CoV vaccine design strategies.

12.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34213308

RESUMO

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Assuntos
COVID-19/genética , Conformação Proteica , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Glicosilação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
13.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321200

RESUMO

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2, and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely, viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non-neutralizing or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy polyclonal epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/química , Infecções por HIV/imunologia , HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Vacinas contra a AIDS/química , Animais , COVID-19/imunologia , Feminino , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Humanos , Macaca mulatta , Coelhos , SARS-CoV-2/química , SARS-CoV-2/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
J Immunol ; 207(1): 344-351, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183368

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Assuntos
Anticorpos Neutralizantes/análise , Testes de Neutralização , SARS-CoV-2/isolamento & purificação , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Humanos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Nat Commun ; 12(1): 2938, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011939

RESUMO

Pre-existing immunity to seasonal endemic coronaviruses could have profound consequences for antibody responses to SARS-CoV-2, induced from natural infection or vaccination. A first step to establish whether pre-existing responses can impact SARS-CoV-2 infection is to understand the nature and extent of cross-reactivity in humans to coronaviruses. Here we compare serum antibody and memory B cell responses to coronavirus spike proteins from pre-pandemic and SARS-CoV-2 convalescent donors using binding and functional assays. We show weak evidence of pre-existing SARS-CoV-2 cross-reactive serum antibodies in pre-pandemic donors. However, we find evidence of pre-existing cross-reactive memory B cells that are activated during SARS-CoV-2 infection. Monoclonal antibodies show varying degrees of cross-reactivity with betacoronaviruses, including SARS-CoV-1 and endemic coronaviruses. We identify one cross-reactive neutralizing antibody specific to the S2 subunit of the S protein. Our results suggest that pre-existing immunity to endemic coronaviruses should be considered in evaluating antibody responses to SARS-CoV-2.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Proteção Cruzada/imunologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Reações Cruzadas/imunologia , Feminino , Humanos , Memória Imunológica/imunologia , Masculino
16.
Curr Res Food Sci ; 4: 224-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937870

RESUMO

Characterising key components within functional ingredients as well as assessing efficacy and bioavailability is an important step in validating nutritional interventions. Machine learning can assess large and complex data sets, such as proteomic data from plants sources, and so offers a prime opportunity to predict key bioactive components within a larger matrix. Using machine learning, we identified two potentially bioactive peptides within a Vicia faba derived hydrolysate, NPN_1, an ingredient which was previously identified for preventing muscle loss in a murine disuse model. We investigated the predicted efficacy of these peptides in vitro and observed that HLPSYSPSPQ and TIKIPAGT were capable of increasing protein synthesis and reducing TNF-α secretion, respectively. Following confirmation of efficacy, we assessed bioavailability and stability of these predicted peptides and found that as part of NPN_1, both HLPSYSPSPQ and TIKIPAGT survived upper gut digestion, were transported across the intestinal barrier and exhibited notable stability in human plasma. This work is a first step in utilising machine learning to untangle the complex nature of functional ingredients to predict active components, followed by subsequent assessment of their efficacy, bioavailability and human plasma stability in an effort to assist in the characterisation of nutritional interventions.

17.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824211

RESUMO

Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.


Assuntos
Óxido de Deutério , Granuloma/parasitologia , Interações Hospedeiro-Parasita , Processamento de Imagem Assistida por Computador/métodos , Leishmania mexicana/metabolismo , Leishmaniose Cutânea/parasitologia , Espectrometria de Massas/métodos , Pele/patologia , Animais , Modelos Animais de Doenças , Feminino , Marcação por Isótopo , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Músculos/parasitologia , Músculos/patologia , Pele/parasitologia
18.
bioRxiv ; 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33758835

RESUMO

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity between the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against infectious virus S protein. We find patterns which are conserved across all samples and this can be associated with site-specific stalling of glycan maturation which act as a highly sensitive reporter of protein structure. Molecular dynamics (MD) simulations of a fully glycosylated spike support s a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.

19.
bioRxiv ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33619491

RESUMO

Rationally designed protein subunit vaccines are being developed for a variety of viruses including influenza, RSV, SARS-CoV-2 and HIV. These vaccines are based on stabilized versions of the primary targets of neutralizing antibodies on the viral surface, namely viral fusion glycoproteins. While these immunogens display the epitopes of potent neutralizing antibodies, they also present epitopes recognized by non or weakly neutralizing ("off-target") antibodies. Using our recently developed electron microscopy epitope mapping approach, we have uncovered a phenomenon wherein off-target antibodies elicited by HIV trimer subunit vaccines cause the otherwise highly stabilized trimeric proteins to degrade into cognate protomers. Further, we show that these protomers expose an expanded suite of off-target epitopes, normally occluded inside the prefusion conformation of trimer, that subsequently elicit further off-target antibody responses. Our study provides critical insights for further improvement of HIV subunit trimer vaccines for future rounds of the iterative vaccine design process.

20.
Bioinformatics ; 37(11): 1635-1636, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33119075

RESUMO

MOTIVATION: Mass spectrometry-based phosphoproteomics can routinely identify and quantify thousands of phosphorylated peptides from a single experiment. However interrogating possible upstream kinases and identifying key literature for phosphorylation sites is laborious and time-consuming. RESULTS: Here, we present Phosphomatics-a publicly available web resource for interrogating phosphoproteomics data. Phosphomatics allows researchers to upload phosphoproteomics data and interrogate possible relationships from a substrate-, kinase- or pathway-centric viewpoint. AVAILABILITY AND IMPLEMENTATION: Phosphomatics is freely available via the internet at: https://phosphomatics.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Fosfotransferases , Proteômica , Espectrometria de Massas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA