Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc (Bayl Univ Med Cent) ; 37(4): 640-645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910816

RESUMO

Introduction: Chronic workplace stress and burnout are impediments to physicians' professional fulfillment, healthcare organizations' efficiency, and patient care quality/safety. General surgery residents are especially at risk due to the complexity of their training. We report the protocol of a metaanalysis of chronic stress and burnout among Accreditation Council for Graduate Medical Education (ACGME)-affiliated general surgery residents in the era after duty-hour reforms, plus downstream effects on their health and clinical performance. Methods: The proposed systematic review and metaanalysis (PROSPERO registration CRD42021277626) will synthesize/pool data from studies of chronic stress and burnout among general surgery residents at ACGME-affiliated programs. The timeframe under review is subdivided into three intervals: (a) after the 2003 duty-hour restrictions but before 2011 reforms, (b) after the 2011 reforms but before the coronavirus pandemic, and (c) the first 3 years after the pandemic's outbreak. Only studies reporting outcomes based on validated instruments will be included. Qualitative studies, commentaries/editorials, narrative reviews, and studies not published in English will be excluded. Multivariable analyses will adjust for sample characteristics and the methodological quality of included studies. Conclusions: The metaanalysis will yield evidence reflecting experiences of North American-based general surgery residents in the years after ACGME-mandated duty-hour restructuring.

2.
Biology (Basel) ; 11(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35205056

RESUMO

After spinal cord injury (SCI), 80% of individuals are diagnosed with osteopenia or osteoporosis. The dramatic loss of bone after SCI increases the potential for fractures 100-fold, with post-fracture complications occurring in 54% of cases. With the age of new SCI injuries increasing, we hypothesized that a SCI-induced reduction in weight bearing could further exacerbate age-induced bone loss. To test this, young (2-3 months) and old (20-30 months) male and female mice were given a moderate spinal contusion injury (T9-T10), and recovery was assessed for 28 days (BMS, rearing counts, distance traveled). Tibial trabecular bone volume was measured after 28 days with ex vivo microCT. While BMS scores did not differ across groups, older subjects travelled less in the open field and there was a decrease in rearing with age and SCI. As expected, aging decreased trabecular bone volume and cortical thickness in both old male and female mice. SCI alone also reduced trabecular bone volume in young mice, but did not have an additional effect beyond the age-dependent decrease in trabecular and cortical bone volume seen in both sexes. Interestingly, both rearing and total activity correlated with decreased bone volume. These data underscore the importance of load and use on bone mass. While partial weight-bearing does not stabilize/reverse bone loss in humans, our data suggest that therapies that simulate complete loading may be effective after SCI.

3.
ACS Omega ; 6(18): 11804-11812, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056334

RESUMO

Biobased materials such as cellulose, chitin, silk, soy, and keratin are attractive alternatives to conventional synthetic materials for filtration applications. They are cheap, naturally abundant, and easily fabricated with tunable surface chemistry and functionality. With the planet's increasing crisis due to pollution, the need for proper filtration of air and water is undeniably urgent. Additionally, fibers that are antibacterial and antiviral are critical for public health and in medical environments. The current COVID-19 pandemic has highlighted the necessity for cheap, easily mass-produced antiviral fiber materials. Biopolymers can fill these roles very well by utilizing their intrinsic material properties, surface chemistry, and hierarchical fiber morphologies for efficient and eco-friendly filtration of physical, chemical, and biological pollutants. Further, they are biodegradable, making them attractive as sustainable, biocompatible green filters. This review presents various biopolymeric materials generated from proteins and polysaccharides, their synthesis and fabrication methods, and notable uses in filtration applications.

4.
Mater Sci Eng C Mater Biol Appl ; 118: 111419, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255020

RESUMO

Nanofiber materials are commonly used as delivery vehicles for dermatological drugs due to their high surface-area-to-volume ratio, porosity, flexibility, and reproducibility. In this study air-jet spinning was used as a novel and economic method to fabricate corn zein nanofiber meshes with model drugs of varying solubility, molecular weight and charge. The release profiles of these drugs were compared to their release from corn zein films to elucidate the effect of geometry and structure on drug delivery kinetics. In film samples, over 50% of drug was released after only 2 h. However, fiber samples exhibited more sustained release, releasing less than 50% after one day. FTIR, SEM, and DSC were performed on nanofibers and films before and after release of the drugs. Structural analysis revealed that the incorporation of model drugs into the fibers would transform the zein proteins from a random coil network to a more alpha helical structure. Upon release, the protein fiber reverted to its original random coil network. In addition, thermal analysis indicated that fibers can protect the drug molecules in high temperature above 160 °C, while drugs within films will degrade below 130 °C. These findings can likely be attributed to the mechanical infiltration of the drug molecules into the ordered structure of the zein fibers during their solution fabrication. The slow release from fiber samples can be attributed to this biophysical interaction, illustrating that release is dictated by more than diffusion in protein-based carriers. The controlled release of a wide variety of drugs from the air-jet spun corn zein nanofiber meshes demonstrates their success as drug delivery vehicles that can potentially be incorporated into different biological materials in the future.


Assuntos
Nanofibras , Preparações Farmacêuticas , Zeína , Materiais Biocompatíveis , Reprodutibilidade dos Testes , Zea mays
5.
Polymers (Basel) ; 10(9)2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30960954

RESUMO

As the average life expectancy continues to increase, so does the need for resorbable materials designed to treat, augment, or replace components and functions of the body. Naturally occurring biopolymers such as silks are already attractive candidates due to natural abundance and high biocompatibility accompanied by physical properties which are easily modulated through blending with another polymer. In this paper, the authors report on the fabrication of biocomposite materials made from binary blends of Bombyx mori silk fibroin (SF) protein and renewably sourced low molecular weight nylon 610 and high molecular weight nylon 1010. Films were characterized using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Results of this study demonstrated that enhanced structural and thermal properties were achievable in composite films SF-N610/N1010 due to their chemical similarity and the possible formation of hydrogen bonds between nylon and silk molecular chains. This study provides useful insight into the sustainable design of functional composite materials for biomedical and green technologies.

6.
Int J Biol Macromol ; 104(Pt A): 919-928, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28666828

RESUMO

Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties.


Assuntos
Materiais Biocompatíveis/química , Celulose/química , Líquidos Iônicos/química , Seda/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA