RESUMO
The inner physicochemical heterogeneity of bacterial cells generates three-dimensional (3D)-dependent variations of resources for effective expression of given chromosomally located genes. This fact has been exploited for adjusting the most favorable parameters for implanting a complex device for optogenetic control of biofilm formation in the soil bacterium Pseudomonas putida. To this end, a DNA segment encoding a superactive variant of the Caulobacter crescendus diguanylate cyclase PleD expressed under the control of the cyanobacterial light-responsive CcaSR system was placed in a mini-Tn5 transposon vector and randomly inserted through the chromosome of wild-type and biofilm-deficient variants of P. putida lacking the wsp gene cluster. This operation delivered a collection of clones covering a whole range of biofilm-building capacities and dynamic ranges in response to green light. Since the phenotypic output of the device depends on a large number of parameters (multiple promoters, RNA stability, translational efficacy, metabolic precursors, protein folding, etc.), we argue that random chromosomal insertions enable sampling the intracellular milieu for an optimal set of resources that deliver a preset phenotypic specification. Results thus support the notion that the context dependency can be exploited as a tool for multiobjective optimization, rather than a foe to be suppressed in Synthetic Biology constructs.
Assuntos
Pseudomonas putida , Pseudomonas putida/metabolismo , Biofilmes , CromossomosRESUMO
The SEVA platform (https://seva-plasmids.com) was launched one decade ago, both as a database (DB) and as a physical repository of plasmid vectors for genetic analysis and engineering of Gram-negative bacteria with a structure and nomenclature that follows a strict, fixed architecture of functional DNA segments. While the current update keeps the basic features of earlier versions, the platform has been upgraded not only with many more ready-to-use plasmids but also with features that expand the range of target species, harmonize DNA assembly methods and enable new applications. In particular, SEVA 4.0 includes (i) a sub-collection of plasmids for easing the composition of multiple DNA segments with MoClo/Golden Gate technology, (ii) vectors for Gram-positive bacteria and yeast and [iii] off-the-shelf constructs with built-in functionalities. A growing collection of plasmids that capture part of the standard-but not its entirety-has been compiled also into the DB and repository as a separate corpus (SEVAsib) because of its value as a resource for constructing and deploying phenotypes of interest. Maintenance and curation of the DB were accompanied by dedicated diffusion and communication channels that make the SEVA platform a popular resource for genetic analyses, genome editing and bioengineering of a large number of microorganisms.
Assuntos
Bactérias , Bases de Dados Factuais , Bactérias/genética , Clonagem Molecular , DNA , Vetores Genéticos , Fenótipo , Plasmídeos/genéticaRESUMO
The potential of LacI/Ptrc , XylS/Pm , AlkS/PalkB , CprK/PDB3 and ChnR/PchnB regulatory nodes, recruited from both Gram-negative and Gram-positive bacteria, as the source of parts for formatting expression cargoes following the Standard European Vector Architecture (SEVA) has been examined. The five expression devices, which cover most known regulatory configurations in bacteria were assembled within exactly the same plasmid backbone and bearing the different functional segments arrayed in an invariable DNA scaffold. Their performance was then analysed in an Escherichia coli strain of reference through the readout of a fluorescence reporter gene that contained strictly identical translation signal elements. This approach allowed us to describe and compare the cognate expression systems with quantitative detail. The constructs under scrutiny diverged considerably in their capacity, expression noise, inducibility and ON/OFF ratios. Inspection of such a variance exposed the different constraints that rule the optimal arrangement of functional DNA segments in each case. The data highlighted also the ease of standardizing inducer-responsive devices subject to transcriptional activation as compared to counterparts based on repressors. The study resulted in a defined collection of formatted expression cargoes lacking any cross talk while offering a panoply of choices to potential users and help interoperability of the specific constructs.
Assuntos
Escherichia coli , Vetores Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Estudos de Viabilidade , Expressão Gênica , Plasmídeos/genética , Regiões Promotoras Genéticas , Padrões de ReferênciaRESUMO
Although the soil bacterium Pseudomonas putida KT2440 bears a bona fide adenylate cyclase gene (cyaA), intracellular concentrations of 3',5'-cyclic adenosine monophosphate (cAMP) are barely detectable. By using reporter technology and direct quantification of cAMP under various conditions, we show that such low levels of the molecule stem from the stringent regulation of its synthesis, efflux and degradation. Poor production of cAMP was the result of inefficient translation of cyaA mRNA. Moreover, deletion of the cAMP-phosphodiesterase pde gene led to intracellular accumulation of the cyclic nucleotide, exposing an additional cause of cAMP drain in vivo. But even such low levels of the signal sustained activation of promoters dependent on the cAMP-receptor protein (CRP). Genetic and biochemical evidence indicated that the phenomenon ultimately rose from the unusual binding parameters of cAMP to CRP. This included an ultratight cAMP-CrpP. putida affinity (KD of 45.0 ± 3.4 nM) and an atypical 1:1 effector/dimer stoichiometry that obeyed an infrequent anti-cooperative binding mechanism. It thus seems that keeping the same regulatory parts and their relational logic but changing the interaction parameters enables genetic devices to take over entirely different domains of the functional landscape.
Assuntos
Pseudomonas putida , AMP Cíclico , Proteína Receptora de AMP Cíclico/genética , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , RegulonRESUMO
Pseudomonas putida is a microorganism of biotechnological interest that-similar to many other environmental bacteria-adheres to surfaces and forms biofilms. Although various mechanisms contributing to the swim-attach decision have been studied in this species, the role of a 7-gene operon homologous to the wsp cluster of Pseudomonas aeruginosa-which regulates cyclic di-GMP (cdGMP) levels upon surface contact-remained to be investigated. In this work, the function of the wsp operon of P. putida KT2440 has been characterized through inspection of single and multiple wsp deletion variants, complementation with Pseudomonas aeruginosa's homologues, combined with mutations of regulatory genes fleQ and fleN and removal of the flagellar regulator fglZ. The ability of the resulting strains to form biofilms at 6 and 24 h under three different carbon regimes (citrate, glucose and fructose) revealed that the Wsp complex delivers a similar function to both Pseudomonas species. In P. putida, the key components include WspR, a protein that harbours the domain for producing cdGMP, and WspF, which controls its activity. These results not only contribute to a deeper understanding of the network that regulates the sessile-planktonic decision of P. putida but also suggest strategies to exogenously control such a lifestyle switch.
Assuntos
Aderência Bacteriana/genética , Proteínas da Membrana Bacteriana Externa/genética , GMP Cíclico/análogos & derivados , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Flagelos/genética , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMO
The biological regime of Pseudomonas putida (and any other bacterium) under given environmental conditions results from the hierarchical expression of sets of genes that become turned on and off in response to one or more physicochemical signals. In some cases, such signals are clearly defined, but in many others, cells are exposed to a whole variety of ill-defined inputs that occur simultaneously. Transcriptomic analyses of bacteria passed from a reference condition to a complex niche can thus expose both the type of signals that they experience during the transition and the functions involved in adaptation to the new scenario. In this article, we describe a complete protocol for generation of transcriptomes aimed at monitoring the physiological shift of P. putida between two divergent settings using as a simple case study the change between homogeneous, planktonic lifestyle in a liquid medium and growth on the surface of an agar plate. To this end, RNA was collected from P. putidaKT2440 cells at various times after growth in either condition, and the genome-wide transcriptional outputs were analysed. While the role of individual genes needs to be verified on a case-by-case basis, a gross inspection of the resulting profiles suggested cells that are cultured on solid media consistently had a higher translational and metabolic activity, stopped production of flagella and were conspicuously exposed to a strong oxidative stress. The herein described methodology is generally applicable to other circumstances for diagnosing lifestyle determinants of interest.
Assuntos
Pseudomonas putida , Flagelos , Perfilação da Expressão Gênica , Estresse Oxidativo , Pseudomonas putida/genética , TranscriptomaRESUMO
The features of the light-responsive cyanobacterial CcaSR regulatory module that determine interoperability of this optogenetic device between Escherichia coli and Pseudomonas putida have been examined. For this, all structural parts (i.e., ho1 and pcyA genes for synthesis of phycocyanobilin, the ccaS/ccaR system from Synechocystis, and its cognate downstream promoter) were maintained but their expression levels and stoichiometry diversified by (i) reassembling them together in a single broad host range, standardized vector and (ii) subjecting the noncoding regulatory sequences to multiple cycles of directed evolution with random genomic mutations (DIvERGE), a recombineering method that intensifies mutation rates within discrete DNA segments. Once passed to P. putida, various clones displayed a wide dynamic range, insignificant leakiness, and excellent capacity in response to green light. Inspection of the evolutionary intermediates pinpointed translational control as the main bottleneck for interoperability and suggested a general approach for easing the exchange of genetic cargoes between different species, i.e., optimization of relative expression levels and upturning of subcomplex stoichiometry.
Assuntos
Escherichia coli/genética , Engenharia Genética/métodos , Optogenética/métodos , Pseudomonas putida/genética , Synechocystis/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Ficobilinas/genética , Ficocianina/genética , Plasmídeos/genética , Regiões Promotoras GenéticasRESUMO
Strategies to control the levels of key enzymes of bacterial metabolism are commonly based on the manipulation of gene of interest within the target pathway. The development of new protocols towards the manipulation of biochemical processes is still a major challenge in the field of metabolic engineering. On this background, the FENIX (functional engineering of SsrA/NIa-based flux control) system allows for the post-translational regulation of protein levels, providing both independent control of the steady-state protein amounts and inducible accumulation of target proteins. This strategy enables an extra layer of control over metabolic fluxes in bacterial cell factories (see Graphical abstract below). The protocol detailed here describes the steps needed to design FENIX-tagged proteins and to adapt the system to virtually any pathway for fine-tuning of metabolic fluxes. Graphical abstract.
RESUMO
While prokaryotic promoters controlled by signal-responding regulators typically display a range of input/output ratios when exposed to cognate inducers, virtually no naturally occurring cases are known to have an OFF state of zero transcription-as ideally needed for synthetic circuits. To overcome this problem, we have modelled and implemented a simple digitalizer module that completely suppresses the basal level of otherwise strong promoters in such a way that expression in the absence of induction is entirely impeded. The circuit involves the interplay of a translation-inhibitory sRNA with the translational coupling of the gene of interest to a repressor such as LacI. The digitalizer module was validated with the strong inducible promoters Pm (induced by XylS in the presence of benzoate) and PalkB (induced by AlkS/dicyclopropyl ketone) and shown to perform effectively in both Escherichia coli and the soil bacterium Pseudomonas putida. The distinct expression architecture allowed cloning and conditional expression of, e.g. colicin E3, one molecule of which per cell suffices to kill the host bacterium. Revertants that escaped ColE3 killing were not found in hosts devoid of insertion sequences, suggesting that mobile elements are a major source of circuit inactivation in vivo.
Assuntos
Colicinas/genética , Expressão Gênica , Bactérias Gram-Negativas/genética , Clonagem Molecular , Colicinas/metabolismo , Escherichia coli/genética , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Biologia de Sistemas/métodosRESUMO
The localization of ribosomes, RNA polymerase (RNAP) and the nucleoid of Pseudomonas putida cells has been inspected with genetic, microscopical and physiological approaches. To this end, strains of P. putida were constructed with fluorescent tags to either ribosomal proteins or the RNAP or both. Their relative positions in respect to the bacterial DNA revealed the separation of the ribosomal pool from the nucleoid, which however co-localized entirely with the tridimensional distribution of RNAP. This split was kept under all growth conditions: exponential versus stationary and different carbon sources. To test the robustness of what appeared to be a phase separation phenomenon, different types of perturbations were entered. In one case, cells were grown under conditions known to accumulate polyhydroxyalkanoate granules that caused a mechanical impact in the cytoplasm - which failed to destroy the split between the translation versus transcription machineries. However, both chloramphenicol and rifampicin blurred - but not eliminated - the boundaries between the phases. The picture that emerges from all these data is not only that the different components of the gene expression hardware are physically divided but also that a large share of the mRNAs ought to move from their site of transcription towards ribosome-rich regions of the cell.
Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Pseudomonas putida/metabolismo , Ribossomos/genética , Ribossomos/metabolismoRESUMO
During evolution of biodegradation pathways for xenobiotic compounds involving Rieske nonheme iron oxygenases, the transition toward novel substrates is frequently associated with faulty reactions. Such events release reactive oxygen species (ROS), which are endowed with high mutagenic potential. In this study, we evaluated how the operation of the background metabolic network by an environmental bacterium may either foster or curtail the still-evolving pathway for 2,4-dinitrotoluene (2,4-DNT) catabolism. To this end, the genetically tractable strain Pseudomonas putida EM173 was implanted with the whole genetic complement necessary for the complete biodegradation of 2,4-DNT (recruited from the environmental isolate Burkholderia sp. R34). By using reporter technology and direct measurements of ROS formation, we observed that the engineered P. putida strain experienced oxidative stress when catabolizing the nitroaromatic substrate. However, the formation of ROS was neither translated into significant activation of the SOS response to DNA damage nor did it result in a mutagenic regime (unlike what has been observed in Burkholderia sp. R34, the original host of the pathway). To inspect whether the tolerance of P. putida to oxidative challenges could be traced to its characteristic reductive redox regime, we artificially altered the NAD(P)H pool by means of a water-forming, NADH-specific oxidase. Under the resulting low-NAD(P)H status, catabolism of 2,4-DNT triggered a conspicuous mutagenic and genomic diversification scenario. These results indicate that the background biochemical network of environmental bacteria ultimately determines the evolvability of metabolic pathways. Moreover, the data explain the efficacy of some bacteria (e.g., pseudomonads) to host and evolve with new catabolic routes.IMPORTANCE Some environmental bacteria evolve with new capacities for the aerobic biodegradation of chemical pollutants by adapting preexisting redox reactions to novel compounds. The process typically starts by cooption of enzymes from an available route to act on the chemical structure of the substrate-to-be. The critical bottleneck is generally the first biochemical step, and most of the selective pressure operates on reshaping the initial reaction. The interim uncoupling of the novel substrate to preexisting Rieske nonheme iron oxygenases usually results in formation of highly mutagenic ROS. In this work, we demonstrate that the background metabolic regime of the bacterium that hosts an evolving catabolic pathway (e.g., biodegradation of the xenobiotic 2,4-DNT) determines whether the cells either adopt a genetic diversification regime or a robust ROS-tolerant status. Furthermore, our results offer new perspectives to the rational design of efficient whole-cell biocatalysts, which are pursued in contemporary metabolic engineering.
Assuntos
Redes e Vias Metabólicas/genética , Pseudomonas putida/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xenobióticos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Burkholderia/genética , Burkholderia/metabolismo , Dinitrobenzenos/metabolismo , Evolução Molecular , Mutagênese , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo , Pseudomonas putida/genéticaRESUMO
The natural physiological regime of the soil bacterium Pseudomonas putida involves incessant exposure to endogenous metabolic conflicts and environmental physicochemical insults. Yet, the role of assisted small RNA-mRNA pairing in the stress tolerance super-phenotype that is the trademark of this bacterium has not been accredited. We have thoroughly explored the physiological consequences -in particular those related to exogenous stress - of deleting the hfq gene of P. putida, which encodes the major RNA chaperone that promotes sRNA-target mRNA interactions. While the overall trend was a general weakening of every robustness descriptor of the Δhfq strain, growth parameters and production of central metabolic enzymes were comparatively less affected than other qualities that depend directly on energy status (e.g. motility, DNA repair). The overall catalytic vigour of the mutant decreased to < 20% than the wild-type strain, as estimated from the specific growth rate of cells carrying the catabolic TOL plasmid pWW0 for m-xylene biodegradation. Several loss-of-function phenotypes could be traced to the effect of the Δhfq deletion on the intracellular contents of the stationary sigma factor RpoS. It thus seems that Hfq, while not indispensable for any essential function, contributes to shape the environmental lifestyle of P. putida.
Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Fator Proteico 1 do Hospedeiro/genética , Pseudomonas putida/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Metabolismo Energético/genética , Deleção de Genes , Fator Proteico 1 do Hospedeiro/metabolismo , Oxirredução , Fenótipo , Plasmídeos/genética , Pseudomonas putida/genética , Pseudomonas putida/fisiologia , RNA/metabolismo , Fator sigma/genética , Xilenos/metabolismoRESUMO
The essential molecular chaperonin GroEL is an example of a functionally highly versatile cellular machine with a wide variety of in vitro applications ranging from protein folding to drug release. Directed evolution of new functions for GroEL is considered difficult, due to its structure as a complex homomultimeric double ring and the absence of obvious molecular engineering strategies. In order to investigate the potential to establish an orthogonal GroEL system in Escherichia coli, which might serve as a basis for GroEL evolution, we first successfully individualised groEL genes by inserting different functional peptide tags into a robustly permissive site identified by transposon mutagenesis. These peptides allowed fundamental aspects of the intracellular GroEL complex stoichiometry to be studied and revealed that GroEL single-ring complexes, which assembled in the presence of several functionally equivalent but biochemically distinct monomers, each consist almost exclusively of only one type of monomer. At least in the case of GroEL, individualisation of monomers thus leads to individualisation of homomultimeric protein complexes, effectively providing the prerequisites for evolving an orthogonal intracellular GroEL folding machine.
Assuntos
Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Modelos Moleculares , Dobramento de ProteínaRESUMO
The σ54-dependent prokaryotic regulator XylR implements a one-input/one-output actuator that transduces the presence of the aromatic effector m-xylene into transcriptional activation of the cognate promoter Pu. Such a signal conversion involves the effector-mediated release of the intramolecular repression of the N-terminal A domain on the central C module of XylR. On this background, we set out to endow this regulator with additional signal-sensing capabilities by inserting a target site of the viral protease NIa in permissive protein locations that once cleaved in vivo could either terminate XylR activity or generate an effector-independent, constitutive transcription factor. To find optimal protein positions to this end, we saturated the xylR gene DNA with a synthetic transposable element designed for randomly delivering in-frame polypeptides throughout the sequence of any given protein. This Tn5-based system supplies the target gene with insertions of a selectable marker that can later be excised, leaving behind the desired (poly) peptides grafted into the protein structure. Implementation of such knock-in-leave-behind (KILB) method to XylR was instrumental to produce a number of variants of this transcription factor (TF) that could compute in vivo two inputs (m-xylene and protease) into a single output following a logic that was dependent on the site of the insertion of the NIa target sequence in the TF. Such NIa-sensitive XylR specimens afforded the design of novel regulatory nodes that entered protease expression as one of the signals recognized in vivo for controlling Pu. This approach is bound to facilitate the functionalization of TFs and other proteins with new traits, especially when their forward engineering is made difficult by, for example, the absence of structural data.
Assuntos
Proteínas de Escherichia coli/metabolismo , Peptídeo Hidrolases/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/química , Plasmídeos , Regiões Promotoras Genéticas , Fatores de Transcrição/químicaRESUMO
The 'Standard European Vector Architecture' database (SEVA-DB, http://seva.cnb.csic.es) was conceived as a user-friendly, web-based resource and a material clone repository to assist in the choice of optimal plasmid vectors for de-constructing and re-constructing complex prokaryotic phenotypes. The SEVA-DB adopts simple design concepts that facilitate the swapping of functional modules and the extension of genome engineering options to microorganisms beyond typical laboratory strains. Under the SEVA standard, every DNA portion of the plasmid vectors is minimized, edited for flaws in their sequence and/or functionality, and endowed with physical connectivity through three inter-segment insulators that are flanked by fixed, rare restriction sites. Such a scaffold enables the exchangeability of multiple origins of replication and diverse antibiotic selection markers to shape a frame for their further combination with a large variety of cargo modules that can be used for varied end-applications. The core collection of constructs that are available at the SEVA-DB has been produced as a starting point for the further expansion of the formatted vector platform. We argue that adoption of the SEVA format can become a shortcut to fill the phenomenal gap between the existing power of DNA synthesis and the actual engineering of predictable and efficacious bacteria.
Assuntos
Bases de Dados Genéticas , Vetores Genéticos , Plasmídeos/genética , Bactérias/genética , Clonagem Molecular , Resistência Microbiana a Medicamentos/genética , Vetores Genéticos/normas , Internet , Fenótipo , Regiões Promotoras Genéticas , Origem de Replicação , Terminologia como AssuntoRESUMO
Although the genome of Pseudomonas putida KT2440 encodes an orthologue of the crp gene of Escherichia coli (encoding the cAMP receptor protein), the regulatory scope of this factor seems to be predominantly co-opted in this bacterium for controlling non-metabolic functions. In order to investigate the reasons for such a functional divergence in otherwise nearly identical proteins, the Crp regulator of P. putida (Crp(P. putida)) was purified to apparent homogeneity and subject to a battery of in vitro assays aimed at determining its principal physicochemical properties. Analytical ultracentrifugation indicated effector-free Crp(P. putida) to be a dimer in solution that undergoes a significant change in its hydrodynamic shape in the presence of cAMP. Such a conformational transition was confirmed by limited proteolysis of the protein in the absence or presence of the inducer. Thermodynamic parameters calculated by isothermal titration calorimetry revealed a tight cAMP-Crp(P. putida) association with an apparent K(D) of 22.5 ± 2.8 nM, i.e. much greater affinity than that reported for the E. coli's counterpart. The regulator also bound cGMP, but with a K(D) = 2.6 ± 0.3 µM. An in vitro transcription system was then set up with purified P. putida's RNA polymerase for examining the preservation of the correct protein-protein architecture that makes Crp to activate target promoters. These results, along with cognate gel retardation assays indicated that all basic features of the reference Crp(E. coli) protein are kept in the P. putida's counterpart, albeit operating under a different set of parameters, the extraordinarily high affinity for cAMP being the most noticeable.
Assuntos
AMP Cíclico/metabolismo , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína C-Reativa/fisiologia , AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/genética , Proteína Receptora de AMP Cíclico/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteólise , Pseudomonas putida/genética , Pseudomonas putida/fisiologiaRESUMO
BACKGROUND: Since publication in 1977 of plasmid pBR322, many breakthroughs in Biology have depended on increasingly sophisticated vector platforms for analysis and engineering of given bacterial strains. Although restriction sites impose a certain format in the procedures for assembling cloned genes, every attempt thus far to standardize vector architecture and nomenclature has ended up in failure. While this state of affairs may still be tolerable for traditional one-at-a-time studies of single genes, the onset of systems and synthetic biology calls for a simplification--along with an optimization--of the currently unwieldy pool of genetic tools. RESULTS: The functional DNA sequences present in the natural bacterial transposon Tn5 have been methodically edited and refactored for the production of a multi-purpose genetic tool named pBAM1, which allows a range of manipulations in the genome of gram-negative bacteria. This all-synthetic construct enhances the power of mini-transposon vectors for either de-construction or re-construction of phenotypes á la carte by incorporating features inspired in systems engineering: modularity, re-usability, minimization, and compatibility with other genetic tools. pBAM1 bears an streamlined, restriction site-freed and narrow-host range replication frame bearing the sequences of R6K oriV, oriT and an ampicillin resistance marker. These go along with a business module that contains a host-independent and hyperactive transposition platform for in vivo or in vitro insertion of desired DNA into the genome of the target bacterium. All functional sequences were standardized for a straightforward replacement by equivalent counterparts, if required. pBAM1 can be delivered into recipient cells by either mating or electroporation, producing transposon insertion frequencies of 1.8 × 10(-3) and 1.02 × 10(-7), respectively in the soil bacterium Pseudomonas putida. Analyses of the resulting clones revealed a 100% of unique transposition events and virtually no-cointegration of the donor plasmid within the target genome. CONCLUSIONS: This work reports the design and performance of an all-synthetic mini-transposon vector. The power of the new system for both identification of new functions or for the construction of desired phenotypes is shown in a genetic survey of hyper-expressed proteins and regulatory elements that influence the expression of the σ54-dependent Pu promoter of P. putida.
Assuntos
Engenharia Genética/métodos , Vetores Genéticos/biossíntese , Pseudomonas putida/genética , Biologia Sintética , Elementos de DNA Transponíveis , DNA BacterianoRESUMO
The genome of the soil bacterium Pseudomonas putida KT2440 encodes singular orthologues of genes crp (encoding the catabolite repression protein, Crp) and cyaA (adenylate cyclase) of Escherichia coli. The levels of cAMP formed by P. putida cells were below detection with a Dictyostelium biosensor in vivo. The cyaA(P. putida) gene was transcribed in vivo but failed to complement the lack of maltose consumption of a cyaA mutant of E. coli, thereby indicating that cyaA(P. putida) was poorly translated or rendered non-functional in the heterologous host. Yet, generation of cAMP by CyaA(P. putida) could be verified by expressing the cyaA(P. putida) gene in a hypersensitive E. coli strain. On the other hand, the crp(P. putida) gene restored the metabolic capacities of an equivalent crp mutant of E. coli, but not in a double crp/cyaA strain, suggesting that the ability to regulate such functions required cAMP. In order to clarify the breadth of the Crp/cAMP system in P. putida, crp and cyaA mutants were generated and passed through a battery of phenotypic tests for recognition of gross metabolic properties and stress-endurance abilities. These assays revealed that the loss of each gene led in most (but not all) cases to the same phenotypic behaviour, indicating a concerted functionality. Unexpectedly, none of the mutations affected the panel of carbon compounds that can be used by P. putida as growth substrates, the mutants being impaired only in the use of various dipeptides as N sources. Furthermore, the lack of crp or cyaA had little influence on the gross growth fingerprinting of the cells. The poor physiological profile of the Crp-cAMP system of P. putida when compared with E. coli exposes a case of regulatory exaptation, i.e. the process through which a property evolved for a particular function is co-opted for a new use.
Assuntos
Toxina Adenilato Ciclase/metabolismo , Repressão Catabólica , AMP Cíclico/biossíntese , Pseudomonas putida/metabolismo , Toxina Adenilato Ciclase/genética , Dictyostelium/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutagênese Insercional , Mutação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crescimento & desenvolvimento , Análise de Sequência de ProteínaRESUMO
The nucleoid protein p6 of Bacillus subtilis phage phi29 binds to DNA, recognizing a structural feature rather than a specific sequence. Upon binding to the viral DNA ends, p6 generates an extended nucleoprotein complex that activates the initiation of phi29 DNA replication. Protein p6 also participates in transcription regulation, repressing the early C2 promoter and assisting the viral regulatory protein p4 in controlling the switch from early to late transcription. Proteins p6 and p4 bind cooperatively to an approximately 200 bp DNA region located between the late A3 and the early A2c promoters, generating an extended nucleoprotein complex that helps to repress the early A2c promoter and to activate the late A3 promoter. We show that stable assembly of this complex requires interaction between protein p6 and the C-terminus of protein p4. Therefore, at this DNA region, stable polymerization of protein p6 relies on p4-specified signals in addition to the structural features of the DNA. Protein p4 would define the phase and boundaries of the p6-DNA complex.