Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 40: 107674, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34917713

RESUMO

This Data-in-brief article includes datasets of electron microscopy, polarised neutron reflectometry and magnetometry for ultra-small cobalt particles formed in titania thin films via ion beam synthesis. Raw data for polarised neutron reflectometry, magnetometry and the particle size distribution are included and made available on a public repository. Additional elemental maps from scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) are also presented. Data were obtained using the following types of equipment: the NREX and PLATYPUS polarised neutron reflectometers; a Quantum Design Physical Property Measurement System (14 T); a JEOL JSM-6490LV SEM, and a JEOL ARM-200F scanning transmission electron microscope (STEM). The data is provided as supporting evidence for the article in Applied Surface Science (A. Bake et al., Appl. Surf. Sci., vol. 570, p. 151068, 2021, DOI 10.1016/j.apsusc.2021.151068), where a full discussion is given. The additional supplementary reflectometry and modelling datasets are intended to assist future scientific software development of advanced fitting algorithms for magnetization gradients in thin films.

2.
ACS Appl Mater Interfaces ; 11(38): 35420-35428, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31448588

RESUMO

Heterostructures exhibiting perpendicular magnetic anisotropy (PMA) have traditionally served the magnetic recording industry. However, an opportunity exists to expand the applications of PMA heterostructures into the realm of hydrogen sensing using ferromagnetic resonance (FMR) by exploiting the hydrogen-induced modifications to PMA that occur at the interface between Pd and a ferromagnet. Here, we present the first in operando depth-resolved study of the in-plane interfacial magnetization of a Co/Pd film which features tailorable PMA in the presence of hydrogen gas. We combine polarized neutron reflectometry with in situ FMR to explore how the absorption of hydrogen at the Co/Pd interface affects the heterostructures spin-resonance condition during hydrogen cycling. Experimental data and modeling reveal that the Pd layer expands when exposed to hydrogen gas, while the in-plane magnetic moment of the Co/Pd film increases as the interfacial PMA is reduced to affect the FMR frequency. This work highlights a potential route for magnetic hydrogen gas sensing.

3.
Phys Rev Lett ; 118(9): 097601, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306309

RESUMO

Ferroelectric-dielectric superlattices consisting of alternating layers of ferroelectric PbTiO_{3} and dielectric SrTiO_{3} exhibit a disordered striped nanodomain pattern, with characteristic length scales of 6 nm for the domain periodicity and 30 nm for the in-plane coherence of the domain pattern. Spatial disorder in the domain pattern gives rise to coherent hard x-ray scattering patterns exhibiting intensity speckles. We show here using variable-temperature Bragg-geometry x-ray photon correlation spectroscopy that x-ray scattering patterns from the disordered domains exhibit a continuous temporal decorrelation due to spontaneous domain fluctuations. The temporal decorrelation can be described using a compressed exponential function, consistent with what has been observed in other systems with arrested dynamics. The fluctuation speeds up at higher temperatures and the thermal activation energy estimated from the Arrhenius model is 0.35±0.21 eV. The magnitude of the energy barrier implies that the complicated energy landscape of the domain structures is induced by pinning mechanisms and domain patterns fluctuate via the generation and annihilation of topological defects similar to soft materials such as block copolymers.

4.
ACS Appl Mater Interfaces ; 9(10): 8783-8795, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28229601

RESUMO

High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 µB per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co0, with a minor fraction of Co2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co0, which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

5.
Nat Commun ; 7: 12664, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585637

RESUMO

Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

6.
Nat Commun ; 6: 10136, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26634894

RESUMO

In epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. These experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.

7.
Phys Rev Lett ; 110(4): 047601, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166200

RESUMO

The remnant polarization of weakly coupled ferroelectric-dielectric superlattices is distributed unequally between the component layers, and as a result the components respond differently to applied electric fields. The difference is apparent in both the nanometer-scale structure of striped polarization domains and in the development of piezoelectric strain and field-induced polarization. Both effects are probed with in situ time-resolved synchrotron x-ray diffraction in a PbTiO(3)/SrTiO(3) superlattice in fields up to 2.38 MV/cm. Domains are initially distorted to increase the polarization in the SrTiO(3) layer while retaining the striped motif. The subsequent transformation to a uniform polarization state at a later time leads to piezoelectric expansion dominated by the field-induced polarization of the SrTiO(3) layers. The results are consistent with theoretical predictions of the field dependence of the domain structure and electrical polarization.

8.
Phys Rev Lett ; 107(5): 055501, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21867078

RESUMO

The nanosecond response of a PbTiO(3)/SrTiO(3) ferroelectric/dielectric superlattice to applied electric fields is closely linked to the dynamics of striped domains of the remnant polarization. The intensity of domain satellite reflections observed with time-resolved x-ray microdiffraction decays in 5-100 ns depending on the magnitude of the electric field. The piezoelectric response of the superlattice within stripe domains is strongly suppressed due to electromechanical clamping between adjacent regions of opposite polarization. Regions of the superlattice that have been switched into a uniform polarization state by the applied electric field, however, exhibit piezoelectricity during the course of the switching process. We propose a switching model different from previous models of the switching of superlattices, based instead on a spatially heterogeneous transformation between striped and uniform polarization states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA