Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746371

RESUMO

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

2.
Sci Rep ; 13(1): 22660, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114733

RESUMO

The aim of this study was to determine tissue-specific blood perfusion impairment of the cervical cord above the compression site in patients with degenerative cervical myelopathy (DCM) using intravoxel incoherent motion (IVIM) imaging. A quantitative MRI protocol, including structural and IVIM imaging, was conducted in healthy controls and patients. In patients, T2-weighted scans were acquired to quantify intramedullary signal changes, the maximal canal compromise, and the maximal cord compression. T2*-weighted MRI and IVIM were applied in all participants in the cervical cord (covering C1-C3 levels) to determine white matter (WM) and grey matter (GM) cross-sectional areas (as a marker of atrophy), and tissue-specific perfusion indices, respectively. IVIM imaging resulted in microvascular volume fraction ([Formula: see text]), blood velocity ([Formula: see text]), and blood flow ([Formula: see text]) indices. DCM patients additionally underwent a standard neurological clinical assessment. Regression analysis assessed associations between perfusion parameters, clinical outcome measures, and remote spinal cord atrophy. Twenty-nine DCM patients and 30 healthy controls were enrolled in the study. At the level of stenosis, 11 patients showed focal radiological evidence of cervical myelopathy. Above the stenosis level, cord atrophy was observed in the WM (- 9.3%; p = 0.005) and GM (- 6.3%; p = 0.008) in patients compared to healthy controls. Blood velocity (BV) and blood flow (BF) indices were decreased in the ventral horns of the GM (BV: - 20.1%, p = 0.0009; BF: - 28.2%, p = 0.0008), in the ventral funiculi (BV: - 18.2%, p = 0.01; BF: - 21.5%, p = 0.04) and lateral funiculi (BV: - 8.5%, p = 0.03; BF: - 16.5%, p = 0.03) of the WM, across C1-C3 levels. A decrease in microvascular volume fraction was associated with GM atrophy (R = 0.46, p = 0.02). This study demonstrates tissue-specific cervical perfusion impairment rostral to the compression site in DCM patients. IVIM indices are sensitive to remote perfusion changes in the cervical cord in DCM and may serve as neuroimaging biomarkers of hemodynamic impairment in future studies. The association between perfusion impairment and cervical cord atrophy indicates that changes in hemodynamics caused by compression may contribute to the neurodegenerative processes in DCM.


Assuntos
Medula Cervical , Doenças Musculoesqueléticas , Compressão da Medula Espinal , Doenças da Medula Espinal , Humanos , Constrição Patológica/patologia , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/patologia , Compressão da Medula Espinal/diagnóstico por imagem , Compressão da Medula Espinal/patologia , Imageamento por Ressonância Magnética/métodos , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Perfusão , Doenças Musculoesqueléticas/patologia , Atrofia/patologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia
3.
Magn Reson Med ; 90(4): 1328-1344, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246894

RESUMO

PURPOSE: The acquisition of accurate B1 maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B1 maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs. In this work, we evaluated and improved the accuracy of the satTFL for cervical spine at 7 T, proposing a novel interferometric encoding optimization. The benefits of such improvements were investigated in an exploratory study of quantitative T1 mapping with pTx-MP2RAGE. METHODS: Global optimization of interferometric encoding was implemented by simulating the ability of the satTFL to reconstruct B1 maps, with varying encoding and inclusion of complex noise, inside a region of interest covering the cervical spine. The performance of satTFL before and after optimization was compared to actual flip angle imaging. Optimized and non-optimized B1 maps were then used to calculate pTx pulses for MP2RAGE T1 mapping. RESULTS: Interferometric encoding optimization resulted in satTFL closer to actual flip angle imaging, with substantial gain of signal in regions where non-optimized satTFL could fail. T1 maps measured with non-adiabatic pTx pulses were closer to standard non-pTx results (which used adiabatic pulses) when using optimized-satTFL, with substantially lower specific absorption rate. CONCLUSION: Optimization of the satTFL interferometric encoding improves B1 maps in the spinal cord, in particular in low SNR regions. A linear correction of the satTFL was additionally shown to be required. The method was successfully used for quantitative phantom and in vivo T1 mapping, showing improved results compared to non-optimized satTFL thanks to improved pTx-pulse generation.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagens de Fantasmas , Medula Espinal/diagnóstico por imagem
4.
Neuroimage Clin ; 35: 103124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905667

RESUMO

Rugby players are subject to multiple impacts to their head and neck that could have adverse neurological effects and put them at increased risk of neurodegeneration. Previous studies demonstrated altered default mode network and diffusion metrics on brain, as well as more foraminal stenosis, disc protrusion and neck pain among players of contact sports as compared to healthy controls. However, the long-term effects of practice and repetitive impacts on brain and cervical spinal cord (cSC) of the rugby players have never been systematically investigated. In this study, 15 retired professional and amateur rugby players (R) and 15 age-matched healthy controls (HC) (all males; mean age R: 46.8 ± 7.6; and HC: 48.6 ± 9.5) were recruited both to investigate cord impairments and further characterize brain structure damage. Medical questionnaires including modified Japanese Orthopedic Association scale (mJOA) and Neck Disability Index (NDI) were filled by all participants. A 3 T multi-parametric MR protocol including conventional qualitative techniques such as T1-, T2-, and T2*-weighted sequences, as well as state-of-the art quantitative techniques including MP2RAGE T1 mapping and 3D ihMTRAGE, was used on both brain and cSC. Normalized brain WM and GM volumes, spine Overall Stenosis Score, cord cross-sectional area and regional T1 and ihMT metrics were derived from these acquisitions. Rugby players showed significantly higher NDI scores, as well as a faster decline of normalized brain GM volume with age as compared to HC. Moreover, higher T1 values on cSC suggestive of structural degeneration, together with higher T1 and lower ihMTsat on brain WM suggestive of demyelination, were observed in retired rugby players as compared to age-matched controls, which may suggest cumulative effects of long-term impacts on the tissues. Metrics also suggest early aging and different aging processes on brain tissue in the players. These preliminary observations provide new insights in the domain, which should now be further investigated on larger cohorts and multicentric longitudinal studies, and further correlated to the likelihood of neurodegenerative diseases and risk factors.


Assuntos
Medula Cervical , Rugby , Encéfalo/diagnóstico por imagem , Constrição Patológica , Humanos , Masculino , Medula Espinal/diagnóstico por imagem
5.
Magn Reson Med ; 87(6): 2600-2612, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181915

RESUMO

PURPOSE: Ultra-high field 1 H MR spectroscopy (MRS) is of great interest to help characterizing human spinal cord pathologies. However, very few studies have been reported so far in this small size structure at these fields due to challenging experimental difficulties caused by static and radiofrequency field heterogeneities, as well as physiological motion. In this work, in line with the recent developments proposed to strengthen spinal cord MRS feasibility at 7 T, a respiratory-triggered acquisition approach was optimized to compensate for dynamic B 0 field heterogeneities and to provide robust cervical spinal cord MRS data. METHODS: A semi-LASER sequence was purposely used, and a dedicated raw data processing algorithm was developed to enhance MR spectral quality by discarding corrupted scans. To legitimate the choices done during the optimization stage, additional tests were carried out to determine the impact of breathing, voluntary motion, body mass index, and fitting algorithm. An in-house quantification tool was concomitantly designed for accurate estimation of the metabolite concentration ratios for choline, N-acetyl-aspartate (NAA), myo-inositol and glutathione. The method was tested on a cohort of 14 healthy volunteers. RESULTS: Average water linewidth and NAA signal-to-noise ratio reached 0.04 ppm and 11.01, respectively. The group-average metabolic ratios were in good agreement with previous studies and showed intersession reproducibility variations below 30%. CONCLUSION: The developed approach allows a rise of the acquired MRS signal quality and of the quantification robustness as compared to previous studies hence offering strengthened possibilities to probe the metabolism of degenerative and traumatic spinal cord pathologies.


Assuntos
Medula Cervical , Algoritmos , Medula Cervical/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem
7.
Magn Reson Imaging ; 84: 18-26, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517015

RESUMO

Magnetization Prepared 2 Rapid Acquisition Gradient Echo (MP2RAGE) is a T1 mapping technique that has been used broadly on brain and recently on cervical spinal cord (cSC). The growing interest for combined investigation of brain and SC in numerous pathologies of the central nervous system such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and traumatic injuries, now brings about the need for optimization with regards to this specific investigation. This implies large spatial coverage with high spatial resolution and short acquisition time, high CNR and low B1+ sensitivity, as well as high reproducibility and robust post-processing tools for T1 quantification in different regions of brain and SC. In this work, a dedicated protocol (referred to as Pr-BSC) has been optimized for simultaneous brain and cSC T1 MP2RAGE acquisition at 3T. After computer simulation optimization, the protocol was applied for in vivo validation experiments and compared to previously published state of the art protocols focusing on either the brain (Pr-B) or the cSC (Pr-SC). Reproducibility and in-ROI standard deviations were assessed on healthy volunteers in the perspective of future clinical use. The mean T1 values, obtained by the Pr-BSC, in brain white, gray and deep gray matters were: (mean ± in-ROI SD) 792 ± 27 ms, 1339 ± 139 ms and 1136 ± 88 ms, respectively. In cSC, T1 values for white matter corticospinal, posterior sensory, lateral sensory and rubro/reticulospinal tracts were 902 ± 41 ms, 920 ± 35 ms, 903 ± 46 ms, 891 ± 41 ms, respectively, and 954 ± 32 ms for anterior and intermediate gray matter. The Pr-BSC protocol showed excellent agreement with previously proposed Pr-B on brain and Pr-SC on cSC, with very high inter-scan reproducibility (coefficients of variation of 0.52 ± 0.36% and 1.12 ± 0.62% on brain and cSC, respectively). This optimized protocol covering both brain and cSC with a sub-millimetric isotropic spatial resolution in one acquisition of less than 8 min, opens up great perspectives for clinical applications focusing on degenerative tissue such as encountered in MS and ALS.


Assuntos
Medula Cervical , Encéfalo/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem
9.
Sci Data ; 8(1): 219, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400655

RESUMO

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/ultraestrutura , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
10.
Nat Protoc ; 16(10): 4611-4632, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400839

RESUMO

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Medula Espinal , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Masculino
12.
Invest Radiol ; 56(2): 127-133, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852445

RESUMO

OBJECTIVES: Ultra-high field magnetic resonance imaging (MRI) (≥7 T) is a unique opportunity to improve the clinical diagnosis of brain pathologies, such as multiple sclerosis or focal epilepsy. However, several shortcomings of 7 T MRI, such as radiofrequency field inhomogeneities, could degrade image quality and hinder radiological interpretation. To address these challenges, an original synthetic MRI method based on T1 mapping achieved with the magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence was developed. The radiological quality of on-demand T1-based contrasts generated by this technique was evaluated in multiple sclerosis and focal epilepsy imaging at 7 T. MATERIALS AND METHODS: This retrospective study was carried out from October 2017 to September 2019 and included 21 patients with different phenotypes of multiple sclerosis and 35 patients with focal epilepsy who underwent MRI brain examinations using a whole-body investigative 7 T magnetic resonance system. The quality of 2 proposed synthetic contrast images were assessed and compared with conventional images acquired at 7 T using the MP2RAGE sequence by 4 radiologists, evaluating 3 qualitative criteria: signal homogeneity, contrast intensity, and lesion visualization. Statistical analyses were performed on reported quality scores using Wilcoxon rank tests and further multiple comparisons tests. Intraobserver and interobserver reliabilities were calculated as well. RESULTS: Radiological quality scores were reported higher for synthetic images when compared with original images, regardless of contrast, pathologies, or raters considered, with significant differences found for all 3 criteria (P < 0.0001, Wilcoxon rank test). None of the 4 radiologists ever rated a synthetic image "markedly worse" than an original image. Synthetic images were rated slightly less satisfying for only 3 epileptic patients, without precluding lesion identification. CONCLUSION: T1-based synthetic MRI with the MP2RAGE sequence provided on-demand contrasts and high-quality images to the radiologist, facilitating lesion visualization in multiple sclerosis and focal epilepsy, while reducing the magnetic resonance examination total duration by removing an additional sequence.


Assuntos
Epilepsias Parciais , Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Epilepsias Parciais/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Estudos Retrospectivos
13.
Magn Reson Med ; 85(3): 1183-1194, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33151009

RESUMO

PURPOSE: To explore the feasibility of dynamic susceptibility contrast MRI at 7 Tesla for human spinal cord perfusion mapping and fill the gap between brain and spinal cord perfusion mapping techniques. METHODS: Acquisition protocols for high-resolution single shot EPI in the spinal cord were optimized for both spin-echo and gradient-echo preparations, including cardiac gating, acquisition times and breathing cycle recording. Breathing-induced MRI signal fluctuations were investigated in healthy volunteers. A specific image- and signal-processing pipeline was implemented to address them. Dynamic susceptibility contrast was then evaluated in 3 healthy volunteers and 5 patients. Bolus depiction on slice-wise signal within cord was investigated, and maps of relative perfusion indices were computed. RESULTS: Signal fluctuations were increased by 1.9 and 2.3 in free-breathing compared to apnea with spin-echo and gradient-echo, respectively. The ratio between signal fluctuations and bolus peak in healthy volunteers was 5.0% for spin-echo and 3.8% for gradient-echo, allowing clear depiction of the bolus on every slice and yielding relative blood flow and volume maps exhibiting the expected higher perfusion of gray matter. However, signal fluctuations in patients were increased by 4 in average (using spin-echo), compromising the depiction of the bolus in slice-wise signal. Moreover, 3 of 18 slices had to be discarded because of fat-aliasing artifacts. CONCLUSION: Dynamic susceptibility contrast MRI at 7 Tesla showed great potential for spinal cord perfusion mapping with a reliability never achieved thus far for single subject and single slice measurements. Signal stability needs to be improved in acquisition conditions associated with patients; guidelines to achieve that have been identified and shared.


Assuntos
Meios de Contraste , Imagem Ecoplanar , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador , Perfusão , Reprodutibilidade dos Testes , Medula Espinal/diagnóstico por imagem
14.
Clin Biomech (Bristol, Avon) ; 81: 105174, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279293

RESUMO

BACKGROUND: Degenerative Cervical Myelopathy results from spine degenerations narrowing the spinal canal and inducing cord compressions. Prognosis is challenging. This study aimed at simulating typical spinal cord compressions observed in patients with a realistic model to better understand pathogenesis for later prediction of patients' evolution. METHODS: A 30% reduction in cord cross-sectional area at C5-C6 was defined as myelopathy threshold based on Degenerative Cervical Myelopathy features from literature and MRI measurements in 20 patients. Four main compression types were extracted from MRIs and simulated with a comprehensive three-dimensional finite element spine model. Median diffuse, median focal and lateral types were modelled as disk herniation while circumferential type additionally involved ligamentum flavum hypertrophy. All stresses were quantified along inferior-superior axis, compression development and across atlas-defined spinal cord regions. FINDINGS: Anterior gray and white matter globally received the highest stress while lateral pathways were the least affected. Median diffuse compression induced the highest stresses. Circumferential type focused stresses in posterior gray matter. Along inferior-superior axis, those two types showed a peak of constraints at compression site while median focal and lateral types showed lower values but extending further. INTERPRETATION: Median diffuse type would be the most detrimental based on stress amplitude. Anterior regions would be the most at risk, except for circumferential type where posterior regions would be equally affected. In addition to applying constraints, ischemia could be a significant component explaining the early demyelination reported in lateral pathways. Moving towards patient-specific simulations, biomechanical models could become strong predictors for degenerative changes.


Assuntos
Vértebras Cervicais/patologia , Fenômenos Mecânicos , Compressão da Medula Espinal/etiologia , Doenças da Medula Espinal/complicações , Fenômenos Biomecânicos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Compressão da Medula Espinal/diagnóstico por imagem , Compressão da Medula Espinal/patologia , Compressão da Medula Espinal/fisiopatologia
15.
Brain ; 143(7): 2089-2105, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572488

RESUMO

Despite important efforts to solve the clinico-radiological paradox, correlation between lesion load and physical disability in patients with multiple sclerosis remains modest. One hypothesis could be that lesion location in corticospinal tracts plays a key role in explaining motor impairment. In this study, we describe the distribution of lesions along the corticospinal tracts from the cortex to the cervical spinal cord in patients with various disease phenotypes and disability status. We also assess the link between lesion load and location within corticospinal tracts, and disability at baseline and 2-year follow-up. We retrospectively included 290 patients (22 clinically isolated syndrome, 198 relapsing remitting, 39 secondary progressive, 31 primary progressive multiple sclerosis) from eight sites. Lesions were segmented on both brain (T2-FLAIR or T2-weighted) and cervical (axial T2- or T2*-weighted) MRI scans. Data were processed using an automated and publicly available pipeline. Brain, brainstem and spinal cord portions of the corticospinal tracts were identified using probabilistic atlases to measure the lesion volume fraction. Lesion frequency maps were produced for each phenotype and disability scores assessed with Expanded Disability Status Scale score and pyramidal functional system score. Results show that lesions were not homogeneously distributed along the corticospinal tracts, with the highest lesion frequency in the corona radiata and between C2 and C4 vertebral levels. The lesion volume fraction in the corticospinal tracts was higher in secondary and primary progressive patients (mean = 3.6 ± 2.7% and 2.9 ± 2.4%), compared to relapsing-remitting patients (1.6 ± 2.1%, both P < 0.0001). Voxel-wise analyses confirmed that lesion frequency was higher in progressive compared to relapsing-remitting patients, with significant bilateral clusters in the spinal cord corticospinal tracts (P < 0.01). The baseline Expanded Disability Status Scale score was associated with lesion volume fraction within the brain (r = 0.31, P < 0.0001), brainstem (r = 0.45, P < 0.0001) and spinal cord (r = 0.57, P < 0.0001) corticospinal tracts. The spinal cord corticospinal tracts lesion volume fraction remained the strongest factor in the multiple linear regression model, independently from cord atrophy. Baseline spinal cord corticospinal tracts lesion volume fraction was also associated with disability progression at 2-year follow-up (P = 0.003). Our results suggest a cumulative effect of lesions within the corticospinal tracts along the brain, brainstem and spinal cord portions to explain physical disability in multiple sclerosis patients, with a predominant impact of intramedullary lesions.


Assuntos
Encéfalo/patologia , Esclerose Múltipla/patologia , Tratos Piramidais/patologia , Adulto , Medula Cervical/patologia , Avaliação da Deficiência , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
16.
Spine (Phila Pa 1976) ; 45(16): 1102-1109, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32205694

RESUMO

STUDY DESIGN: Continuous measurements and computation of absolute metrics of cervical subarachnoid space (CSS) and spinal cord (SC) geometries proposed are based on in vivo magnetic resonance imaging and 3D reconstruction. OBJECTIVE: The aim of the study is to offer a new methodology to continuously characterize and to quantify the detailed morphology of the CSS and the cervical SC in 3D for healthy subjects in both neutral supine and flexion. SUMMARY OF BACKGROUND DATA: To the best of our knowledge, no study provides a morphological quantification by absolute indices based on the 3D reconstruction of SC and CSS thanks to in vivo magnetic resonance imaging. Moreover, no study provides a continuous description of the geometries. METHODS: Absolute indices of SC (cross-sectional area, compression ratio, position in the canal, length) and of CSS (cross-sectional area, occupational ratio, lengths) were computed by measures from 3D semi-automatic reconstructions of high resolution in vivo magnetic resonance images (3D T2-SPACE sequence) on healthy subjects (N = 11) for two postures: supine neutral and flexion neck positions. The variability induced by the semi-automatic reconstruction and by the landmarks positioning were investigated by preliminary sensitivity analyses. Inter and intra-variability were also quantified on a randomly chosen part of our population (N = 5). RESULTS: The length and cross-sectional area of SC are significantly different (P < 0.05) in flexion compared with neutral neck position. Spinal cord stays centered in the canal for both postures. However, the cross-sectional area of CSS is submitted to low variation after C3 vertebra for both postures. Occupational ratio (OR) and compression ratio (CR) after C3 are significantly lower in flexion. CONCLUSION: This study presented interpretations of morphological measures: (1) left-right stability (described by the Left-Right eccentricity index) ensured by the denticulate ligaments and the nerve roots attached to the dural sheaths, (2) a Poisson effect of the SC was partially notified through its axial (antero-posterior [AP] diameter, OR, CR) and its longitudinal geometrical descriptions (length of spinal cord [LSC]). Such morphological data can be useful for geometrical finite element modeling and could now be used to compare with injured or symptomatic subjects. LEVEL OF EVIDENCE: 3.


Assuntos
Medula Cervical/anatomia & histologia , Vértebras Cervicais/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Canal Medular/anatomia & histologia , Medula Espinal/anatomia & histologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pescoço , Postura , Amplitude de Movimento Articular
17.
Magn Reson Med ; 84(3): 1198-1217, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32057128

RESUMO

PURPOSE: To develop a noninvasive technique to map human spinal cord (SC) perfusion in vivo. More specifically, to implement an intravoxel incoherent motion (IVIM) protocol at ultrahigh field for the human SC and assess parameters estimation errors. METHODS: Monte-Carlo simulations were conducted to assess estimation errors of 2 standard IVIM fitting approaches (two-step versus one-step fit) over the range of IVIM values reported for the human brain and for typical SC diffusivities. Required signal-to-noise ratio (SNR) was inferred for estimation of the parameters product, fIVIM D* (microvascular fraction times pseudo-diffusion coefficient), within 10% error margins. In-vivo IVIM imaging of the SC was performed at 7T in 6 volunteers. An image processing pipeline is proposed to generate IVIM maps and register them for an atlas-based region-wise analysis. RESULTS: Required b = 0 SNRs for 10% error estimation on fIVIM D* with the one-step fit were 159 and 185 for diffusion-encoding perpendicular and parallel to the SC axis, respectively. Average in vivo b = 0 SNR within cord was 141 ± 79, corresponding to estimation errors of 12.7% and 14.7% according to numerical simulations. Slice- and group-averaging reduced noise in IVIM maps, highlighting the difference in perfusion between gray and white matter. Mean ± standard deviation fIVIM and D* values across subjects within gray (respectively white) matter were 16.0 ± 1.7 (15.0 ± 1.6)% and 11.4 ± 2.9 (11.5 ± 2.4) × 10-3 mm2 /s. CONCLUSION: Single-subject data SNR at 7T was insufficient for reliable perfusion estimation. However, atlas-averaged IVIM maps highlighted the higher microvascular fraction of gray matter compared to white matter, providing first results of healthy human SC perfusion mapping with MRI.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Perfusão , Medula Espinal/diagnóstico por imagem
18.
Neuroimage ; 205: 116275, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618700

RESUMO

T1 mapping lacks specificity toward a single particular biological feature, however it has the potential to discriminate spinal cord regional tissue organization and characterize tissue microstructural impairments occurring in neurodegenerative pathologies. In this exploratory work, T1 mapping of the cervical spinal cord with a 300-µm in-plane resolution was performed on fourteen healthy subjects at 7T, using the MP2RAGE sequence. Individual images from C1 to C7 vertebral levels provided a clear delineation of spinal cord anatomical details and substructures including motor columns within gray matter (GM) horns, anterior median fissure, central canal, ventral, lateral and dorsal white matter (WM) fasciculi, and posterior median septum. Group studies highlighted regional T1 differences between regions of interest so far hardly visible at lower spatial resolution. Two-dimensional averaged T1 maps and manual parcellation of GM and WM substructures were built based on these data. Benefiting from the very high spatial resolution achievable at ultra-high field for T1 mapping, this work contributes to improve the in vivo characterization of the cervical spinal cord. By allowing investigation within a wider range of functional regions, it also opens new perspectives for pathology diagnosis such as motor neuron disease, neuropathic pain or refined investigation of neurodegeneration.


Assuntos
Medula Cervical/anatomia & histologia , Substância Cinzenta/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Substância Branca/anatomia & histologia , Adolescente , Adulto , Medula Cervical/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/normas , Masculino , Neuroimagem/instrumentação , Neuroimagem/normas , Substância Branca/diagnóstico por imagem , Adulto Jovem
19.
J Acoust Soc Am ; 146(4): 2452, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671972

RESUMO

In-ear devices are used in a wide range of applications for which the device's usability and/or efficiency is strongly related to comfort aspects that are influenced by the mechanical interaction between the device and the walls of the earcanal. Although the displacement of the earcanal walls due to the insertion of the device is an important characteristic of this interaction, existing studies on this subject are very limited. This paper proposes a method to estimate this displacement in vivo using a registration technique on magnetic resonance images. The amplitude, the location and the direction of the earcanal wall displacement are computed for four types of earplugs used by one participant. These displacements give indications on how each earplug deforms the earcanal for one specific earcanal geometry and one specific earplug insertion. Although the displacement due to a specific earplug family cannot be generalized using the results of this paper, the latter help to understand where, how much, and how each studied earplug deforms the earcanal of the participant. This method is revealed as a promising tool to investigate further acoustical and physical comfort aspects of in-ear devices.


Assuntos
Meato Acústico Externo/diagnóstico por imagem , Dispositivos de Proteção das Orelhas , Imageamento por Ressonância Magnética , Adulto , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador , Masculino
20.
NMR Biomed ; 32(11): e4142, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31393649

RESUMO

The recently-proposed MP2RAGE sequence was purposely optimized for cervical spinal cord imaging at 3T. Sequence parameters were chosen to optimize gray/white matter T1 contrast with sub-millimetric resolution and scan-time < 10 min while preserving reliable T1 determination with minimal B1+ variation effects within a range of values compatible with pathologies and surrounding structures. Results showed good agreements with IR-based measurements, high MP2RAGE-based T1 reproducibility and preliminary evidences of age- and tract-related T1 variations in the healthy spinal cord.


While T1 measurements present multiple challenges (robustness, acquisition time), the recently proposed MP2RAGE sequence (magnetization-prepared two rapid acquisition gradient echoes) has opened new perspectives to characterize tissue microstructure changes occurring in a pathological or developmental context. Extensively used for brain studies, it was herein adapted to investigate the cervical spinal cord (SC) at 3 T. By integrating Bloch equations, the MP2RAGE sequence parameters were chosen to optimize SC gray matter/white matter (GM/WM) T1 contrast with sub-millimetric resolution, a scan time less than 10 min and a reliable T1 determination with minimal B1+ variation effect, within a range of values compatible with different pathologies and surrounding structures. The residual B1+ effect on T1 values was corrected using a look-up-table approach and B1+ mapping. The accuracy of B1+ -corrected T1 measurements was assessed on a phantom with respect to conventional inversion recovery. In vivo MP2RAGE acquisitions were performed on five young (28.8 ± 4.3 years old) and five elderly (60.2 ± 2.9 years old) volunteers and analyzed using a template-based approach. Phantom experiments led to high agreements between inversion-recovery spin-echo and MP2RAGE-based T1 values (R2  = 0.997). In vivo T1 values for cervical WM, anterior GM (aGM), posterior sensory tracts (PSTs) and lateral motor tracts (LMTs) were 917 ± 29 s, 934 ± 33 ms, 920 ± 37 ms and 877 ± 35 ms, respectively, with all subjects and cervical levels considered. Significant differences were observed between aGM and LMTs, and between LMTs and PSTs, in agreement with the literature. Repeated T1 measurements demonstrated high reproducibility of the MP2RAGE in the SC (variation coefficient < 5% in all regions of interest). Finally, preliminary assessment of age-related SC tissue microstructure variation additionally showed evidence of SC atrophy and slight trends of T1 decrease with age in all regions. Overall, this study shows that fast, robust and accurate sub-millimetric resolution T1 mapping in the cervical SC using the MP2RAGE sequence is possible, paving the way for future multi-centric and longitudinal clinical studies investigating the pathological cord.


Assuntos
Vértebras Cervicais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Simulação por Computador , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA