Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36558915

RESUMO

The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.

2.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164247

RESUMO

The reactivity of thiophene in Diels-Alder reactions is investigated with different maleimide derivatives. In this paper, we have synthesized for the first time the Diels-Alder adducts of thiophene at room temperature and atmospheric pressure. Maleimido-thiophene adducts were promoted by AlCl3. The effects of solvent, time, temperature and the use of different Lewis acids were studied, showing dramatic effects for solvent and Lewis acid. Furthermore, the catalysis with AlCl3 is highly stereoselective, preferably providing the exo form of the adduct. Additionally, we also discovered the ability of AlCl3 to catalyze the arylation of maleimides to yield 3-aryl succinimides in a straightforward manner following a Friedel-Crafts-type addition. The inclusion of a selenocyanate group contributes to the cytotoxic activity of the adduct. This derivatization (from compound 7 to compound 15) results in an average GI50 value of 1.98 µM in the DTP (NCI-60) cell panel, resulting in being especially active in renal cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cianatos/farmacologia , Compostos de Selênio/farmacologia , Tiofenos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cianatos/química , Reação de Cicloadição , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ácidos de Lewis/química , Compostos de Selênio/química , Tiofenos/farmacologia
3.
Antioxidants (Basel) ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068900

RESUMO

A series of 30 novel N,N disubstituted selenoureas were synthesized, characterized, and their antioxidant ability was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays. Additionally, their cytotoxic activity was tested in vitro in a panel of three different cancer (breast, lung and colon) and two normal cell lines. Each selenourea entity contains a para-substituted phenyl ring with different electron-withdrawing and electron-donating groups, and different aliphatic and aromatic nuclei. All of the synthesized selenoureas present antioxidant capacity at high concentrations in the DPPH assay, and three of them (2b, 2c and 2d) showed greater radical scavenging capacity than ascorbic acid at lower concentrations. These results were confirmed by the ABTS assay, where these novel selenoureas present even higher antioxidant capacity than the reference compound Trolox. On the other hand, 10 selenoureas present IC50 values below 10 µM in at least one cancer cell line, resulting in the adamantyl nucleus (6a-6e), the most interesting in terms of activity and selectivity. Outstanding results were found for selenourea 6c, tested in the NCI60 cell line panel and showing an average GI50 of 1.49 µM for the 60 cell lines, and LC50 values ranging from 9.33 µM to 4.27 µM against 10 of these cancer cell lines. To gain insight into its anticancer activity mechanism, we investigated the cell cycle progression of the promising compound 6c, as well as the type of programmed-cell death in a colon cancer cell line it provokes (HT-29). Compound 6c provoked S phase cell cycle arrest and the induction of cell death was independent of caspase activation, suggesting autophagy, though this assertion requires additional studies. Overall, we envision that this compound can be further developed for the potential treatment of colon cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA