Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360867

RESUMO

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Assuntos
Interleucina-9 , Leucemia Linfocítica Crônica de Células B , Animais , Humanos , Camundongos , Fatores Imunológicos , Interleucina-10/metabolismo , Interleucina-9/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/patologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Linfócitos T Citotóxicos/metabolismo , Microambiente Tumoral
2.
EMBO J ; 42(23): e113714, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916875

RESUMO

Primary Sjögren's syndrome (pSS) is an inflammatory autoimmune disorder largely mediated by type I and II interferon (IFN). The potential contribution of innate immune cells, such as natural killer (NK) cells and dendritic cells (DC), to the pSS pathology remains understudied. Here, we identified an enriched CD16+ CD56hi NK cell subset associated with higher cytotoxic function, as well as elevated proportions of inflammatory CD64+ conventional dendritic cell (cDC2) subtype that expresses increased levels of MICa/b, the ligand for the activating receptor NKG2D, in pSS individuals. Circulating cDC2 from pSS patients efficiently induced activation of cytotoxic NK cells ex vivo and were found in proximity to CD56+ NK cells in salivary glands (SG) from pSS patients. Interestingly, transcriptional activation of IFN signatures associated with the RIG-I/DDX60 pathway, IFN I receptor, and its target genes regulate the expression of NKG2D ligands on cDC2 from pSS patients. Finally, increased proportions of CD64hi RAE-1+ cDC2 and NKG2D+ CD11b+ CD27+ NK cells were present in vivo in the SG after poly I:C injection. Our study provides novel insight into the contribution and interplay of NK and cDC2 in pSS pathology and identifies new potential therapy targets.


Assuntos
Autoimunidade , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais , Células Dendríticas
3.
Nat Commun ; 14(1): 6772, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880206

RESUMO

Antigen cognate dendritic cell (DC)-T cell synaptic interactions drive activation of T cells and instruct DCs. Upon receiving CD4+ T cell help, post-synaptic DCs (psDCs) are licensed to generate CD8+ T cell responses. However, the cellular and molecular mechanisms that enable psDCs licensing remain unclear. Here, we describe that antigen presentation induces an upregulation of MHC-I protein molecules and increased lipid peroxidation on psDCs in vitro and in vivo. We also show that these events mediate DC licensing. In addition, psDC adoptive transfer enhances pathogen-specific CD8+ T responses and protects mice from infection in a CD8+ T cell-dependent manner. Conversely, depletion of psDCs in vivo abrogates antigen-specific CD8+ T cell responses during immunization. Together, our data show that psDCs enable CD8+ T cell responses in vivo during vaccination and reveal crucial molecular events underlying psDC licensing.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos , Animais , Regulação para Cima , Peroxidação de Lipídeos , Apresentação de Antígeno , Antígenos , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Dendríticas , Sinapses/metabolismo , Camundongos Endogâmicos C57BL
4.
Eur J Immunol ; 53(11): e2350393, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37598303

RESUMO

Dendritic cells (DCs) bridge innate and adaptive immunity. Their main function is to present antigens to prime T cells and initiate and shape adaptive responses. Antigen presentation takes place through intimate contacts between the two cells, termed immune synapses (IS). During the formation of IS, information travels towards the T-cell side to induce and tune its activation; but it also travels in reverse via engagement of membrane receptors and within extracellular vesicles transferred to the DC. Such reverse information transfer and its consequences on DC fate have been largely neglected. Here, we review the events and effects of IS-mediated antigen presentation on DCs. In addition, we discuss novel technological advancements that enable monitoring DCs interactions with T lymphocytes, the main effects of DCs undergoing productive IS (postsynaptic DCs, or psDCs), and how reverse information transfer could be harnessed to modulate immune responses for therapeutic intervention.


Assuntos
Células Dendríticas , Sinapses Imunológicas , Linfócitos T , Apresentação de Antígeno , Antígenos
5.
Front Immunol ; 14: 1197289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520527

RESUMO

The organization of the mitochondrial network is relevant for the metabolic fate of T cells and their ability to respond to TCR stimulation. This arrangement depends on cytoskeleton dynamics in response to TCR and CD28 activation, which allows the polarization of the mitochondria through their change in shape, and their movement along the microtubules towards the immune synapse. This work focus on the role of End-binding protein 1 (EB1), a protein that regulates tubulin polymerization and has been previously identified as a regulator of intracellular transport of CD3-enriched vesicles. EB1-interferred cells showed defective intracellular organization and metabolic strength in activated T cells, pointing to a relevant connection of the cytoskeleton and metabolism in response to TCR stimulation, which leads to increased AICD. By unifying the organization of the tubulin cytoskeleton and mitochondria during CD4+ T cell activation, this work highlights the importance of this connection for critical cell asymmetry together with metabolic functions such as glycolysis, mitochondria respiration, and cell viability.


Assuntos
Linfócitos T CD4-Positivos , Proteínas Associadas aos Microtúbulos , Mitocôndrias , Células Jurkat , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Mitocôndrias/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD28/metabolismo , Potencial da Membrana Mitocondrial , Sinapses Imunológicas
6.
J Extracell Vesicles ; 12(6): e12333, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37328936

RESUMO

Cell proteostasis includes gene transcription, protein translation, folding of de novo proteins, post-translational modifications, secretion, degradation and recycling. By profiling the proteome of extracellular vesicles (EVs) from T cells, we have found the chaperonin complex CCT, involved in the correct folding of particular proteins. By limiting CCT cell-content by siRNA, cells undergo altered lipid composition and metabolic rewiring towards a lipid-dependent metabolism, with increased activity of peroxisomes and mitochondria. This is due to dysregulation of the dynamics of interorganelle contacts between lipid droplets, mitochondria, peroxisomes and the endolysosomal system. This process accelerates the biogenesis of multivesicular bodies leading to higher EV production through the dynamic regulation of microtubule-based kinesin motors. These findings connect proteostasis with lipid metabolism through an unexpected role of CCT.


Assuntos
Vesículas Extracelulares , Cinesinas , Cinesinas/metabolismo , Chaperonina com TCP-1/metabolismo , Vesículas Extracelulares/metabolismo , Metabolismo dos Lipídeos , Lipídeos
7.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36194479

RESUMO

The individual contribution of specific myeloid subsets such as CD1c+ conventional DC (cDC) to perpetuation of rheumatoid arthritis (RA) pathology remains unclear. In addition, the specific innate sensors driving pathogenic activation of CD1c+ cDC in patients with RA and their functional implications have not been characterized. Here, we assessed phenotypical, transcriptional, and functional characteristics of CD1c+ and CD141+ cDC and monocytes from the blood and synovial fluid of patients with RA. Increased levels of CCR2 and the IgG receptor CD64 on circulating CD1c+ cDC was associated with the presence of this DC subset in the synovial membrane in patients with RA. Moreover, synovial CD1c+ cDC are characterized by increased expression of proinflammatory cytokines and high abilities to induce pathogenic IFN-γ+IL-17+CD4+ T cells in vitro. Finally, we identified the crosstalk between Fcγ receptors and NLRC4 as a potential molecular mechanism mediating pathogenic activation, CD64 upregulation, and functional specialization of CD1c+ cDC in response to dsDNA-IgG in patients with RA.


Assuntos
Artrite Reumatoide , Células Dendríticas , Humanos , Células Dendríticas/metabolismo , Artrite Reumatoide/metabolismo , Membrana Sinovial/patologia , Líquido Sinovial , Citocinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Glicoproteínas/metabolismo , Antígenos CD1/metabolismo
8.
Front Immunol ; 13: 946358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36131943

RESUMO

Communication through cell-cell contacts and extracellular vesicles (EVs) enables immune cells to coordinate their responses against diverse types of pathogens. The function exerted by EVs in this context depends on the proteins and nucleic acids loaded into EVs, which elicit specific responses involved in the resolution of infection. Several mechanisms control protein and nucleic acid loading into EVs; in this regard, acetylation has been described as a mechanism of cellular retention during protein sorting to exosomes. HDAC6 is a deacetylase involved in the control of cytoskeleton trafficking, organelle polarity and cell migration, defense against Listeria monocytogenes (Lm) infection and other immune related functions. Here, we show that the protein content of dendritic cells (DCs) and their secreted EVs (DEVs) vary during Lm infection, is enriched in proteins related to antiviral functions compared to non-infected cells and depends on HDAC6 expression. Analyses of the post-translational modifications revealed an alteration of the acetylation and ubiquitination profiles upon Lm infection both in DC lysates and DEVs. Functionally, EVs derived from infected DCs upregulate anti-pathogenic genes (e.g. inflammatory cytokines) in recipient immature DCs, which translated into protection from subsequent infection with vaccinia virus. Interestingly, absence of Listeriolysin O in Lm prevents DEVs from inducing this anti-viral state. In summary, these data underscore a new mechanism of communication between bacteria-infected DC during infection as they alert neighboring, uninfected DCs to promote antiviral responses.


Assuntos
Vesículas Extracelulares , Listeria monocytogenes , Listeriose , Ácidos Nucleicos , Antivirais/metabolismo , Citocinas/metabolismo , Células Dendríticas , Vesículas Extracelulares/metabolismo , Humanos , Imunidade Inata , Ácidos Nucleicos/metabolismo
9.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536205

RESUMO

Understanding the fate of dendritic cells (DCs) after productive immune synapses (postsynaptic DCs) with T cells during antigen presentation has been largely neglected in favor of deciphering the nuances of T cell activation and memory generation. Here, we describe that postsynaptic DCs switch their transcriptomic signature, correlating with epigenomic changes including DNA accessibility and histone methylation. We focus on the chemokine receptor Ccr7 as a proof-of-concept gene that is increased in postsynaptic DCs. Consistent with our epigenomic observations, postsynaptic DCs migrate more efficiently toward CCL19 in vitro and display enhanced homing to draining lymph nodes in vivo. This work describes a previously unknown DC population whose transcriptomics, epigenomics, and migratory capacity change in response to their cognate contact with T cells.


Assuntos
Epigenômica , Transcriptoma , Movimento Celular , Células Dendríticas , Linfonodos , Receptores CCR7 , Sinapses
10.
Cancers (Basel) ; 12(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260499

RESUMO

Extracellular vesicles (EVs) play a crucial role in intercellular communication as vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids including different RNAs. Dendritic cells (DCs)-derived EVs (DEVs), albeit variably, express major histocompatibility complex (MHC)-peptide complexes and co-stimulatory molecules on their surface that enable the interaction with other immune cells such as CD8+ T cells, and other ligands that stimulate natural killer (NK) cells, thereby instructing tumor rejection, and counteracting immune-suppressive tumor microenvironment. Malignant cells oppose this effect by secreting EVs bearing a variety of molecules that block DCs function. For instance, tumor-derived EVs (TDEVs) can impair myeloid cell differentiation resulting in myeloid-derived suppressor cells (MDSCs) generation. Hence, the unique composition of EVs makes them suitable candidates for the development of new cancer treatment approaches including prophylactic vaccine targeting oncogenic pathogens, cancer vaccines, and cancer immunotherapeutics. We offer a perspective from both cell sides, DCs, and tumor cells, on how EVs regulate the antitumor immune response, and how this translates into promising therapeutic options by reviewing the latest advancement in DEV-based cancer therapeutics.

11.
Virology ; 541: 25-31, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826843

RESUMO

Simian foamy viruses (SFVs) are complex retroviruses that are widespread throughout nonhuman primates. SFVs can also be transmitted to humans, mostly through bites. We previously observed that primary zoonotic gorilla SFV strains grow much more slowly than laboratory-adapted chimpanzee strains. Here, we tested the hypothesis that the growth of SFV is limited by interferon (IFN) using inhibitors of cellular pathways involved in the induction or action of type I IFN. Inhibitors of JAK1/2 (Ruxolitinib) and TBK-1 (BX795) led to a 2- to 4-fold higher percentage of cells infected with zoonotic gorilla SFVs but did not affect the replication of laboratory-adapted chimpanzee SFVs. IKK2 inhibitors (TPCA-1 and BMS345541) had no effect on any of the SFV strains. In conclusion, the addition of molecules that inhibit the type I IFN response to the culture medium can be used as a simple and efficient method to enhance the replication of zoonotic gorilla SFVs.


Assuntos
Interferon Tipo I/antagonistas & inibidores , Vírus Espumoso dos Símios/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Gorilla gorilla , Humanos , Quinase I-kappa B/antagonistas & inibidores , Células K562 , Nitrilas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Vírus Espumoso dos Símios/fisiologia , Tiofenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA