Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 23(15): A987-1009, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367699

RESUMO

The BP09 experiment conducted by the Centre for Maritime Research and Experimentation in the Ligurian Sea in March 2009 provided paired vertical profiles of nadir-viewing radiances L(u)(z) and downward irradiances E(d)(z) and inherent optical properties (IOPs, absorption, scattering and backscattering coefficients). An inversion algorithm was implemented to retrieve IOPs from apparent optical properties (AOPs, radiance reflectance R(L), irradiance reflectance R(E) and diffuse attenuation coefficient K(d)) derived from the radiometric measurements. Then another inversion algorithm was developed to infer vertical profiles of water constituent concentrations, including chlorophyll-a concentration, non-algal particle concentration, and colored dissolved organic matter from the retrieved IOPs based on a bio-optical model. The algorithm was tested on a synthetic dataset and found to give reliable results with an accuracy better than 1%. When the algorithm was applied to the BP09 dataset it was found that good retrievals of IOPs could be obtained for sufficiently deep waters, i.e. for L(u)(z) and E(d)(z) measurements conducted to depths of 50 m or more. This requirement needs to be satisfied in order to obtain a good estimation of the backscattering coefficient. For such radiometric measurements a correlation of 0.88, 0.96 and 0.93 was found between retrieved and measured absorption, scattering and backscattering coefficients, respectively. A comparison between water constituent values derived from the measured IOPs and in-situ measured values, yielded a correlation of 0.80, 0.78, and 0.73 for chlorophyll-a concentration, non-algal particle concentration, and absorption coefficient of colored dissolved organic matter at 443 nm, respectively. This comparison indicates that adjustments to the bio-optical model are needed in order to obtain a better match between inferred and measured water constituent values in the Ligurian Sea using the methodology developed in this paper.

2.
Appl Opt ; 48(24): 4663-75, 2009 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19696853

RESUMO

The particulate backscattering ratio (b(bp)/b(p)) is a useful indicator of the angular scattering characteristics of natural waters. Recent studies have shown evidence both for and against significant spectral variability in b(bp)/b(p) in the visible domain, but most show significant variability in its magnitude. We present results from a case study in which both backscattering and scattering coefficients were measured at nine wavelengths in a region of UK coastal waters where optical scattering is strongly influenced by inorganic particles and where a wide range of turbidities is found in a small geographic area. Using a new approach based on regression analysis of in situ signals, it is shown that, for this study site, most of the apparent variability in the magnitude of the backscattering ratio can be attributed to measurement uncertainties. Regression analysis suggests that b(bp)/b(p) is wavelength dependent for these mineral-rich waters. This conclusion can only be avoided by positing the existence of undocumented, systematic, wavelength-dependent errors in backscattering measurements made by two independently calibrated sensors. These results are important for radiative transfer simulations in mineral-dominated waters where the backscattering ratio has often been assumed to be spectrally flat. Furthermore, spectral dependence also has profound implications for our understanding of the relationship between b(bp)/b(p) and particle size distributions in coastal waters since the commonly assumed power-law distribution is associated with a spectrally flat particulate backscattering ratio for nonabsorbing particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA