Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869370

RESUMO

Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.

2.
Sci Total Environ ; 941: 173571, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830415

RESUMO

Ice phenology is of great importance for the thermal structure of lakes and ponds and the biology of lake species. Under the current climate change conditions, ice-cover duration has been reduced by an advance in ice-off, and a delay in ice-on, and future projections foresee this trend as continuing. Here, we describe the current ice phenology of Pyrenean high mountain lakes and ponds, including ice-cover duration and ice-on and ice-off dates. We used mixed models to identify the variables that explained the observed patterns, extrapolated them across all water bodies in the mountain range, and related the seasonality of air and water temperatures with ice phenology using structural equation models. Ice phenology was obtained from the temperature series of 85 lakes and ponds for fourteen years, including 2001 to 2004 and 2009 to 2019. We discovered that high autumn precipitation was related to earlier ice-on dates, and that earlier ice-off dates were associated with higher following-summer water temperatures. We found a greater predictability of ice-off dates and ice-cover duration than ice-on dates. Altitude was the most important variable explaining the variation in ice phenology, followed by latitude, which was related to climatic differences among the northern and southern slopes of the mountain range. The lake area was significant for ice-on dates and ice-cover duration. The interannual variability in air temperature and radiation was remarkable for the ice-off date and ice-cover duration but not for the ice-on date. In contrast, wind speed was related to an earlier ice-off date and shorter ice-cover duration. All the measured lakes and ponds froze in winter during the studied period, a feature maintained in the extrapolation to the whole set of water bodies.

3.
J Plankton Res ; 45(2): 266-277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37012976

RESUMO

Experimental nutrient additions are a fundamental approach to investigating plankton ecology. Possibilities range from whole-lake fertilization to flask assays encompassing a trade-off between closeness to the "real world" and feasibility and replication. Here we describe an enclosure type that minimizes the manipulation of planktonic communities during the enclosure filling. The enclosure (typically ~100 L volume) consists of a narrow translucent cylinder that can comprise the entire photic zone (or a large part of it in clear deep lakes, e.g. 20-m long) and holds a sediment trap at the bottom for recovering the sinking material. The enclosures are inexpensive and straightforward to build. Thus, many can be used in an experiment, favoring the diversity of treatments and the number of replicates. They also are lightweight with easy transport and use in lakes that cannot be reached by road. The enclosures are fundamentally aimed at investigating the short-term response of the planktonic community, integrated across the photic zone, to pulse perturbations using before and after comparisons and multiple replication and treatments. The pros and cons of the enclosure design are evaluated based on experience gained in Lake Redon, a high mountain ultraoligotrophic deep lake in the Pyrenees.

4.
Front Microbiol ; 13: 935378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187988

RESUMO

Due to global warming, shorter ice cover duration might drastically affect the ecology of lakes currently undergoing seasonal surface freezing. High-mountain lakes show snow-rich ice covers that determine contrasting conditions between ice-off and ice-on periods. We characterized the bacterioplankton seasonality in a deep high-mountain lake ice-covered for half a year. The lake shows a rich core bacterioplankton community consisting of three components: (i) an assemblage stable throughout the year, dominated by Actinobacteria, resistant to all environmental conditions; (ii) an ice-on-resilient assemblage dominating during the ice-covered period, which is more diverse than the other components and includes a high abundance of Verrucomicrobia; the deep hypolimnion constitutes a refuge for many of the typical under-ice taxa, many of which recover quickly during autumn mixing; and (iii) an ice-off-resilient assemblage, which members peak in summer in epilimnetic waters when the rest decline, characterized by a dominance of Flavobacterium, and Limnohabitans. The rich core community and low random elements compared to other relatively small cold lakes can be attributed to its simple hydrological network in a poorly-vegetated catchment, the long water-residence time (ca. 4 years), and the long ice-cover duration; features common to many headwater deep high-mountain lakes.

5.
PLoS One ; 16(8): e0254702, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34343195

RESUMO

Thermal variables are crucial drivers of biological processes in lakes and ponds. In the current context of climate change, determining which factors better constrain their variation within lake districts become of paramount importance for understanding species distribution and their conservation. In this study, we describe the regional and short-term interannual variability in surface water temperature of high mountain lakes and ponds of the Pyrenees. And, we use mixed regression models to identify key environmental factors and to infer mean and maximum summer temperature, accumulated degree-days, diel temperature ranges and three-days' oscillation. The study is based on 59 lake-temperature series measured from 2001 to 2014. We found that altitude was the primary explicative factor for accumulated degree-days and mean and maximum temperature. In contrast, lake area showed the most relevant effect on the diel temperature range and temperature oscillations, although diel temperature range was also found to decline with altitude. Furthermore, the morphology of the catchment significantly affected accumulated degree-days and maximum and mean water temperatures. The statistical models developed here were applied to upscale spatially the current thermic conditions across the whole set of lakes and ponds of the Pyrenees.


Assuntos
Altitude , Ecossistema , Lagos , Temperatura , Modelos Teóricos , Lagoas , Análise de Regressão
6.
Sci Rep ; 10(1): 3003, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080240

RESUMO

During the last decades, atmospheric nitrogen loading in mountain ranges of the Northern Hemisphere has increased substantially, resulting in high nitrate concentrations in many lakes. Yet, how increased nitrogen has affected denitrification, a key process for nitrogen removal, is poorly understood. We measured actual and potential (nitrate and carbon amended) denitrification rates in sediments of several lake types and habitats in the Pyrenees during the ice-free season. Actual denitrification rates ranged from 0 to 9 µmol N2O m-2 h-1 (mean, 1.5 ± 1.6 SD), whereas potential rates were about 10-times higher. The highest actual rates occurred in warmer sediments with more nitrate available in the overlying water. Consequently, littoral habitats showed, on average, 3-fold higher rates than the deep zone. The highest denitrification potentials were found in more productive lakes located at relatively low altitude and small catchments, with warmer sediments, high relative abundance of denitrification nitrite reductase genes, and sulphate-rich waters. We conclude that increased nitrogen deposition has resulted in elevated denitrification rates, but not sufficiently to compensate for the atmospheric nitrogen loading in most of the highly oligotrophic lakes. However, there is potential for high rates, especially in the more productive lakes and landscape features largely govern this.

7.
Environ Microbiol ; 22(1): 297-309, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31680440

RESUMO

Microbial communities in natural ecosystems are subject to strong ecological rules. The study of local communities along a regional metacommunity can reveal patterns of community assembly, and disentangle the underlying ecological processes. In particular, we seek drivers of community assembly at the regional scale using a large lacustrine dataset (>300 lakes) along the geographical, limnological and physico-chemical gradients in the Pyrenees. By using high throughput amplicon sequencing of the 16S rRNA gene, and inferring environmental sources of bacterial immigrants, we showed that surface aquatic bacterial assemblages were strongly influenced by terrestrial populations from soil, biofilms or sediments, and primarily selected by a pH-alkalinity gradient. Indeed, source proportions explained 27% of the community variation, and chemistry 15% of the total variation, half of it shared with the sources. Major taxonomic groups such as Verrucomicrobia, Actinobacteria and Bacteroidetes showed higher aquatic affinities than Parcubacteria, Gammaproteobacteria, Alphaproteobacteria or Betaproteobacteria, which may be recruited and selected through different hydrographic habitats. A regional fingerprint was observed with lower alpha diversity and higher beta diversity in the central Pyrenees than in both ends. We suggest an ecological succession process, likely influenced by complex interactions of environmental source dispersal and environmental filtering along the mountain range geography.


Assuntos
Organismos Aquáticos/classificação , Bactérias/classificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Bactérias/genética , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Biodiversidade , Ecossistema , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Microbiota , Plâncton/classificação , RNA Ribossômico 16S/genética , Espanha , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
8.
Front Microbiol ; 10: 1229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214153

RESUMO

Effects of nitrogen (N) deposition on microbially-driven processes in oligotrophic freshwater ecosystems are poorly understood. We quantified guilds in the main N-transformation pathways in benthic habitats of 11 mountain lakes along a dissolved inorganic nitrogen gradient. The genes involved in denitrification (nirS, nirK, nosZ), nitrification (archaeal and bacterial amoA), dissimilatory nitrate reduction to ammonium (DNRA, nrfA) and anaerobic ammonium oxidation (anammox, hdh) were quantified, and the bacterial 16S rRNA gene was sequenced. The dominant pathways and associated bacterial communities defined four main N-transforming clusters that differed across habitat types. DNRA dominated in the sediments, except in the upper layers of more productive lakes where nirS denitrifiers prevailed with potential N2O release. Loss as N2 was more likely in lithic biofilms, as indicated by the higher hdh and nosZ abundances. Archaeal ammonia oxidisers predominated in the isoetid rhizosphere and rocky littoral sediments, suggesting nitrifying hotspots. Overall, we observed a change in potential for reactive N recycling via DNRA to N losses via denitrification as lake productivity increases in oligotrophic mountain lakes. Thus, N deposition results in a shift in genetic potential from an internal N accumulation to an atmospheric release in the respective lake systems, with increased risk for N2O emissions from productive lakes.

9.
J Vis Exp ; (142)2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30582595

RESUMO

Denitrification is the primary biogeochemical process removing reactive nitrogen from the biosphere. The quantitative evaluation of this process has become particularly relevant for assessing the anthropogenic-altered global nitrogen cycle and the emission of greenhouse gases (i.e., N2O). Several methods are available for measuring denitrification, but none of them are completely satisfactory. Problems with existing methods include their insufficient sensitivity, and the need to modify the substrate levels or alter the physical configuration of the process using disturbed samples.This work describes a method for estimating sediment denitrification rates that combines coring, acetylene inhibition, and microsensor measurements of the accumulated N2O. The main advantages of this method are a low disturbance of the sediment structure and the collection of a continuous record of N2O accumulation; these enable estimates of reliable denitrification rates with minimum values up to 0.4-1 µmol N2O m-2 h-1. The ability to manipulate key factors is an additional advantage for obtaining experimental insights. The protocol describes procedures for collecting the cores, calibrating the sensors, performing the acetylene inhibition, measuring the N2O accumulation, and calculating the denitrification rate. The method is appropriate for estimating denitrification rates in any aquatic system with retrievable sediment cores. If the N2O concentration is above the detection limit of the sensor, the acetylene inhibition step can be omitted to estimate the N2O emission instead of denitrification. We show how to estimate both actual and potential denitrification rates by increasing nitrate availability as well as the temperature dependence of the process. We illustrate the procedure using mountain lake sediments and discuss the advantages and weaknesses of the technique compared to other methods. This method can be modified for particular purposes; for instance, it can be combined with 15N tracers to assess nitrification and denitrification or field in situ measurements of denitrification rates.


Assuntos
Desnitrificação/fisiologia , Sedimentos Geológicos/química , Óxido Nitroso/química
10.
Proc Natl Acad Sci U S A ; 115(48): 12229-12234, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420511

RESUMO

Airborne microbes (bacteria, archaea, protists, and fungi) were surveyed over a 7-y period via high-throughput massive sequencing of 16S and 18S rRNA genes in rain and snow samples collected fortnightly at a high-elevation mountain Long-Term Ecological Research (LTER) Network site (LTER-Aigüestortes, Central Pyrenees, Spain). This survey constitutes the most comprehensive mountain-top aerobiology study reported to date. The air mass origins were tracked through modeled back-trajectories and analysis of rain water chemical composition. Consistent microbial seasonal patterns were observed with highly divergent summer and winter communities recurrent in time. Indicative microbial taxa were unveiled as a forensic signature, and ubiquitous taxa were observed as common atmosphere inhabitants, highlighting aerosols as a potentially successful mechanism for global microbial dispersal. Source-tracking analyses identified freshwater, cropland, and urban biomes as the most important sources for airborne bacteria in summer, while marine and forest biomes prevailed in winter, in agreement with air mass retrotrajectories and the prevailing general and regional atmospheric circulation.


Assuntos
Microbiologia do Ar , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Aerossóis/análise , Archaea/classificação , Archaea/genética , Atmosfera , Bactérias/classificação , Bactérias/genética , Biodiversidade , Fungos/classificação , Fungos/genética , Filogenia , Estações do Ano , Espanha
11.
Environ Microbiol ; 20(7): 2422-2437, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687572

RESUMO

Using the 16S rRNA and mcrA genes, we investigated the composition, abundance and activity of sediment archaeal communities within 18 high-mountain lakes under contrasted metal levels from different origins (bedrock erosion, past-mining activities and atmospheric depositions). Bathyarchaeota, Euryarchaeota and Woesearchaeota were the major phyla found at the meta-community scale, representing 48%, 18.3% and 15.2% of the archaeal community respectively. Metals were equally important as physicochemical variables in explaining the assemblage of archaeal communities and their abundance. Methanogenesis appeared as a process of central importance in the carbon cycle within sediments of alpine lakes as indicated by the absolute abundance of methanogen 16S rRNA and mcrA gene transcripts (105 to 109 copies g-1 ). We showed that methanogen abundance and activity were significantly reduced with increasing concentrations of Pb and Cd, two indicators of airborne metal contaminations. Considering the ecological importance of methanogenesis in sediment habitats, these metal contaminations may have system wide implications even in remote area such as alpine lakes. Overall, this work was pioneer in integrating the effect of long-range atmospheric depositions on archaeal communities and indicated that metal contamination might significantly compromise the contribution of Archaea to the carbon cycling of the mountain lake sediments.


Assuntos
Archaea/efeitos dos fármacos , Lagos/microbiologia , Metais/toxicidade , Microbiologia da Água , Poluentes Químicos da Água/toxicidade , Archaea/genética , Ciclo do Carbono , DNA Arqueal , Ecossistema , Sedimentos Geológicos/microbiologia , Filogenia , RNA Ribossômico 16S
12.
Sci Rep ; 8(1): 4457, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535368

RESUMO

A rich eukaryotic planktonic community exists in high-mountain lakes despite the diluted, oligotrophic and cold, harsh prevailing conditions. Attempts of an overarching appraisal have been traditionally hampered by observational limitations of small, colorless, and soft eukaryotes. We aimed to uncover the regional eukaryotic biodiversity of a mountain lakes district to obtain general conclusions on diversity patterns, dominance, geographic diversification, and food-web players common to oligotrophic worldwide distributed freshwater systems. An unprecedented survey of 227 high-altitude lakes comprising large environmental gradients was carried out using Illumina massive tag sequencing of the 18S rRNA gene. We observed a large Chrysophyceae dominance in richness, abundance and novelty, and unveiled an unexpected richness in heterotrophic phagotrophs and parasites. In particular, Cercozoa and Chytridiomycota showed diversity features similar to the dominant autotrophic groups. The prominent beta-dispersion shown by parasites suggests highly specific interactions and a relevant role in food webs. Interestingly, the freshwater Pyrenean metacommunity contained more diverse specific populations than its closest marine oligotrophic equivalent, with consistently higher beta-diversity. The relevance of unseen groups opens new perspectives for the better understanding of planktonic food webs. Mountain lakes, with remarkable environmental idiosyncrasies, may be suitable environments for the genetic diversification of microscopic eukaryotic life forms.


Assuntos
Cercozoários/isolamento & purificação , Chrysophyta/isolamento & purificação , Quitridiomicetos/isolamento & purificação , Plâncton/classificação , RNA Ribossômico 18S/genética , Análise de Sequência de RNA/métodos , Altitude , Processos Autotróficos , Biodiversidade , Cercozoários/classificação , Cercozoários/genética , Chrysophyta/classificação , Chrysophyta/genética , Quitridiomicetos/classificação , Quitridiomicetos/genética , Cadeia Alimentar , França , Processos Heterotróficos , Lagos , Filogenia , Plâncton/genética
13.
Front Microbiol ; 6: 361, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999921

RESUMO

Sharp boundaries in the physical environment are usually associated with abrupt shifts in organism abundance, activity, and diversity. Aquatic surface microlayers (SML) form a steep gradient between two contrasted environments, the atmosphere and surface waters, where they regulate the gas exchange between both environments. They usually harbor an abundant and active microbial life: the neuston. Few ecosystems are subjected to such a high UVR regime as high altitude lakes during summer. Here, we measured bulk estimates of heterotrophic activity, community structure and single-cell physiological properties by flow cytometry in 19 high-altitude remote Pyrenean lakes and compared the biological processes in the SML with those in the underlying surface waters. Phototrophic picoplankton (PPP) populations, were generally present in high abundances and in those lakes containing PPP populations with phycoerythrin (PE), total PPP abundance was higher at the SML. Heterotrophic nanoflagellates (HNF) were also more abundant in the SML. Bacteria in the SML had lower leucine incorporation rates, lower percentages of "live" cells, and higher numbers of highly-respiring cells, likely resulting in a lower growth efficiency. No simple and direct linear relationships could be found between microbial abundances or activities and environmental variables, but factor analysis revealed that, despite their physical proximity, microbial life in SML and underlying waters was governed by different and independent processes. Overall, we demonstrate that piconeuston in high altitude lakes has specific features different from those of the picoplankton, and that they are highly affected by potential stressful environmental factors, such as high UVR radiation.

14.
ISME J ; 6(9): 1786-97, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22495069

RESUMO

Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter-spring (that is, the 0 (o)C slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer-autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC-1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC-1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC-1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments.


Assuntos
Archaea/classificação , Archaea/fisiologia , Lagos/microbiologia , Filogenia , Archaea/genética , Biodiversidade , Genes Arqueais/genética , Lagos/química , Dados de Sequência Molecular , Oxirredução , RNA Ribossômico 16S/genética
15.
Appl Environ Microbiol ; 77(6): 1937-45, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239556

RESUMO

The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal assemblage was dominated by phylotypes closely related to the crenarchaeal 1.1a group (58% ± 18% of total 16S rRNA gene sequences), and consistent structural changes were detected during the study. Water temperature was the environmental variable that better explained spring, summer, and winter (ice-covered lakes) archaeal assemblage structure. The amoA gene was detected year round, and seasonal changes in amoA gene composition were well correlated with changes in the archaeal 16S rRNA gene pool. In addition, copy numbers of both the specific 1.1a group 16 rRNA and archaeal amoA genes were well correlated, suggesting that most freshwater 1.1a Crenarchaeota had the potential to carry out ammonia oxidation. Seasonal changes in the diversity and abundance of AOA (i.e., amoA) were better explained by temporal changes in ammonium, the substrate for nitrification, and mostly nitrite, the product of ammonia oxidation. Lacustrine amoA gene sequences grouped in coherent freshwater phylogenetic clusters, suggesting that freshwater habitats harbor typical amoA-containing ecotypes, which is different from soils and seas. We observed within the freshwater amoA gene sequence pool a high genetic divergence (translating to up to 32% amino acid divergence) between the spring and the remaining AOA assemblages. This suggests that different AOA ecotypes are adapted to different temporal ecological niches in these lakes.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Nitrogênio/metabolismo , Archaea/classificação , Archaea/genética , Biodiversidade , Água Doce , Dados de Sequência Molecular , Oxirredutases/genética , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Estações do Ano , Espanha
16.
Sci Total Environ ; 408(23): 5854-61, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20869098

RESUMO

Long-range atmospheric trace element contamination affecting natural systems has occurred since early historical times in the Northern Hemisphere. In relatively remote sites, soils are the largest reservoir of these airborne contaminants. Trace elements stored in soils can later be remobilized and thus soils are a potential delayed, long-lasting source of contamination for the aquatic ecosystems. Here we measured the atmospheric deposition and in-lake fluxes in order to model the transfer of Pb, Zn and As from terrestrial to aquatic ecosystems during the snow- and ice-free season in three mountain catchments in the Central Pyrenees. According to the model, there was a net export of Pb and As from the catchments. We postulate that accumulated anthropogenic Pb contamination and the weathering of As-rich rocks are the most likely sources. In contrast, Zn was largely retained in the catchment. For Pb and As, the terrestrial inputs were >91% and for Zn were ~71% of the total inputs to the lakes. Nearly all Pb entering the lakes was retained in the sediments whereas 5-38% of As and Zn was lost through the outflow. We were unable to adjust the model for Zn for one of the lakes. The uptake by macrophytes could be a considerable sink for Zn, which was not considered in our transport model.


Assuntos
Arsênio/química , Poluentes Ambientais/química , Chumbo/química , Modelos Químicos , Zinco/química , Arsênio/análise , Atmosfera/química , Ecossistema , Monitoramento Ambiental , Poluentes Ambientais/análise , Água Doce/química , Cinética , Chumbo/análise , Estações do Ano , Tempo (Meteorologia) , Zinco/análise
17.
Environ Sci Pollut Res Int ; 17(9): 1606-21, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20556527

RESUMO

BACKGROUND, AIM, AND SCOPE: High mountain soils constitute a long-term cumulative record of atmospherically deposited trace elements from both natural and anthropogenic sources. The main aims of this study were to determine the level of major and trace metals (Al, Ti, Mn, Fe, and Zr) of lithologic origin and airborne contaminating trace elements (Ni, Cu, Zn, As, Cd, and Pb) in soils in the Central Pyrenees as an indication of background contamination over SW Europe, to establish whether there is a spatial pattern of accumulation of trace elements in soils as a function of altitude, and to examine whether altitude-related physicochemical properties of soils affect the accumulation of major metals and trace elements. METHODS: Major metals and trace elements were measured in "top" (i.e., first 10 cm) and "bottom" (i.e., below 10 cm) soil samples along an altitudinal transect (1,520-2,880 m a.s.l.) in the Central Pyrenees. Total concentrations were determined by X-ray fluorescense spectrometry. Total major metal concentrations were analysed by conventional X-ray fluorescence spectrometry (XRF) with a Siemens SRS 303 instrument. Total trace element concentrations were determined with an energy-dispersive multielement miniprobe XRF analyser. Acid-extractable concentrations were measured by inductively coupled plasma after previous extraction with nitric acid and hydrogen peroxide in closed beakers. Acid-extractable major metal concentrations were measured by inductively coupled plasma (ICP)-Optic Emission Spectrometry with a Perkin Elmer 3200 RL Instrument. Acid-extractable trace element concentrations were determined by ICP-Mass Spectrometry with a Perkin Elmer ELAN 6000. RESULTS: Trace element concentration ranges were (in mg kg(-1), inventories in g m(-2) between parenthesis) <2-58 (0.5-6.6) for Ni, 6-30 (0.2-3.4) for Cu, 38-236 (1.6-32.4) for Zn, 6-209 (0.2-12.8) for As, 0.02-0.64 (<0.04) for Cd, and 28-94 (0.6-13.0) for Pb. These concentrations were, in general, comparable to those recorded in soils from other European mountainous areas and were in many cases above the threshold recommended for ecosystem protection by regional and European environmental authorities. The highest concentrations were found at lower altitudes, indicating an effect of local contamination up to ∼2,300 m a.s.l. Only above this altitude can trace elements in soils be considered representative of a background, long-range atmospheric contamination. CONCLUSIONS: None of the storage capacity properties of soils examined were determinant of the differences in elemental concentrations along the altitudinal transect. At the upper altitude range, Ni, Cu, and Pb showed a approximately two- to fivefold increase over the average concentration of the local dominant lithology, reflecting the regional and global background of atmospheric contamination in the area.


Assuntos
Monitoramento Ambiental , Poluentes do Solo/análise , Oligoelementos/análise , Poluentes Atmosféricos/análise , Altitude , Atmosfera/química , Poluição Ambiental/estatística & dados numéricos , Espanha
18.
Environ Microbiol ; 11(6): 1612-23, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19453609

RESUMO

We have analysed the diversity of the bacteria, which grow after addition of concentrated airborne particles and desert dust in different microcosms combinations with water samples from oligotrophic alpine lakes. We used, on the one hand, airborne bacteria transported by an African dust plume and collected in a high mountain area in the central Pyrenees (Spain). On the other hand, we collected desert dust in Mauritania (c. 3000 km distance, and a few days estimated airborne journey), a known source region for dust storms in West Africa, which originates many of the dust plumes landing on Europe. In all the dust-amended treatments we consistently observed bacterial growth of common phyla usually found in freshwater ecosystems, i.e. Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, and a few Bacteroidetes, but with different composition based on lake water pretreatment and dust type. Overall, we tentatively split the bacterial community in (i) typical freshwater non-airborne bacteria, (ii) cosmopolitan long-distance airborne bacteria, (iii) non-freshwater low-distance airborne bacteria, (iv) non-freshwater long-distance airborne soil bacteria and (v) freshwater non-soil airborne bacteria. We identified viable long-distance airborne bacteria as immigrants in alpine lakes (e.g. Sphingomonas-like) but also viable putative airborne pathogens with the potential to grow in remote alpine areas (Acinetobacter-like and Arthrobacter-like). Generation of atmospheric aerosols and remote dust deposition is a global process, largely enhanced by perturbations linked to the global change, and high mountain lakes are very convenient worldwide model systems for monitoring global-scale bacterial dispersion and pathogens entries in remote pristine environments.


Assuntos
Microbiologia do Ar , Bactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Viabilidade Microbiana , África , Bactérias/classificação , Sequência de Bases , Biodiversidade , Poeira/análise , Monitoramento Ambiental , Europa (Continente) , Geografia , Sedimentos Geológicos/microbiologia , Dados de Sequência Molecular , Filogenia
19.
Sci Total Environ ; 407(5): 1701-14, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19091383

RESUMO

Dynamic modelling of hydrochemistry is a valuable tool to study and predict the recovery of surface waters from acidification, and to assess the effects of confounding factors (such as delayed soil response and changing climate) that cause hysteresis during reversal from acidification. The availability of soil data is often a limitation for the regional application of dynamic models. Here we present a method to upscale site-specific soil properties to a regional scale in order to circumvent that problem. The method proposed for upscaling relied on multiple regression models between soil properties and a suite of environmental variables used as predictors. Soil measurements were made during a field survey in 13 catchments in the Pyrenees (NW Spain). The environmental variables were derived from mapped or remotely sensed topographic, lithological, land-cover, and climatic information. Regression models were then used to model soil parameters, which were supplied as input for the biogeochemical model MAGIC (Model for Acidification of Groundwater In Catchments) in order to reconstruct the history of acidification in Pyrenean lakes and forecast the recovery under a scenario of reduced acid deposition. The resulting simulations were then compared with model runs using field measurements as input parameters. These comparisons showed that regional averages for the key water and soil chemistry variables were suitably reproduced when using the modelled parameters. Simulations of water chemistry at the catchment scale also showed good results, whereas simulated soil parameters reflected uncertainty in the initial modelled estimates.


Assuntos
Modelos Teóricos , Solo , Água , Simulação por Computador , Geografia , Análise de Regressão , Espanha
20.
Environ Sci Technol ; 41(7): 2196-202, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17438763

RESUMO

A first case of temperature-dependent distribution of polybromodiphenyl ethers (PBDEs) in remote areas is shown. Analysis of these compounds in fish from Pyrenean lakes distributed along an altitudinal transect shows higher concentrations at lower temperatures, as predicted in the global distillation model. Conversely, no temperature-dependent distribution is observed in a similar transect in the Tatra mountains (Central Europe) nor in fish from high mountain lakes distributed throughout Europe. The fish concentrations of polychlorobiphenyls (PCBs) examined for comparison showed significant temperature correlations in all these studied lakes. Cold trapping of both PCBs and PBDEs concerned the less volatile congeners. In the Pyrenean lake transect the concentrations of PCBs and PBDEs in fish were correlated despite the distinct use of these compounds and their 40 year time lag of emissions to the environment. Thus, temperature effects have overcome these anthropogenic differences constituting at present the main process determining their distributions. These cases of distinct PBDEs and PCBs behavior in high mountains likely reflect early stages in the environmental distribution of the former since they have been under secondary redistribution processes over much shorter time than the latter.


Assuntos
Altitude , Monitoramento Ambiental/estatística & dados numéricos , Peixes/metabolismo , Bifenil Polibromatos/análise , Bifenilos Policlorados/análise , Temperatura , Poluentes Químicos da Água/análise , Animais , Geografia , Polônia , Eslováquia , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA