Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(22): 5944-5958, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815414

RESUMO

Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.


Assuntos
DNA Ambiental , Microbiota , Pinus , Monitoramento Biológico , Betula , Microbiota/genética
2.
FEMS Microbiol Ecol ; 98(1)2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35099004

RESUMO

The skin microbiota plays a major role in health of organisms but it is still unclear how such bacterial assemblages respond to changes in environmental conditions and anthropogenic perturbations. In this study, we investigated the effects of the eutrophication of freshwater ecosystems on the skin microbiota of fish. We sampled wild gudgeon Gobio occitaniae from 17 river sites along an eutrophication gradient and compared their skin microbiota diversity and composition, using a 16s rRNA gene metabarcoding approach. Results showed a tendency for higher taxonomic and phylogenetic diversity in highly eutrophic sites linked to the presence of suspended organic matters. We also highlighted significant links between eutrophication and skin microbiota taxonomic composition and beta-diversity. In contrast, skin microbiota characteristics did not correlate with host factors such as age or sex, although microbiota beta-diversity did vary significantly according to host parasite load. To conclude, our study highlights the importance of environmental factors, especially eutrophication, on the diversity and composition of skin mucus bacterial communities. Because changes in the skin microbiota may induce potential deleterious consequences on host health and population persistence, our results confirm the importance of accounting for host-microbiota interactions when examining the consequences of anthropogenic activities on aquatic fauna.


Assuntos
Microbiota , Animais , Eutrofização , Humanos , Filogenia , RNA Ribossômico 16S/genética , Rios/microbiologia
3.
Environ Microbiol ; 23(4): 1812-1829, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955144

RESUMO

The plant endosphere is colonized by complex microbial communities and microorganisms, which colonize the plant interior at least part of their lifetime and are termed endophytes. Their functions range from mutualism to pathogenicity. All plant organs and tissues are generally colonized by bacterial endophytes and their diversity and composition depend on the plant, the plant organ and its physiological conditions, the plant growth stage as well as on the environment. Plant-associated microorganisms, and in particular endophytes, have lately received high attention, because of the increasing awareness of the importance of host-associated microbiota for the functioning and performance of their host. Some endophyte functions are known from mostly lab assays, genome prediction and few metagenome analyses; however, we have limited understanding on in planta activities, particularly considering the diversity of micro-environments and the dynamics of conditions. In our review, we present recent findings on endosphere environments, their physiological conditions and endophyte colonization. Furthermore, we discuss microbial functions, the interaction between endophytes and plants as well as methodological limitations of endophyte research. We also provide an outlook on needs of future research to improve our understanding on the role of microbiota colonizing the endosphere on plant traits and ecosystem functioning.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Endófitos , Desenvolvimento Vegetal , Raízes de Plantas , Plantas
4.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942980

RESUMO

The host microbiota may have an impact on pathogens. This is often studied in laboratory-reared hosts but rarely in individuals whose microbiota looks like that of wild animals. In this study, we modified the gut microbiota of the insect Tenebrio molitor by rearing larvae in soil sampled from the field. We showed by high throughput sequencing methods that this treatment modifies the gut microbiota so that it is more diversified than that of laboratory-reared insects, and closely resembled the one of soil-dwelling insects. To describe what the entomopathogenic bacterial symbiont Xenorhabdus (Enterobacteriaceae), vectored by the soil-dwelling nematode Steinernema, might experience in natural conditions, we studied the infestation of the soil-reared T. molitor larvae with three Steinernema-Xenorhabdus pairs. We performed the infestation at 18°C, which delays the emergence of new infective juveniles (IJs), the soil-dwelling nematode forms, but which is a temperature compatible with natural infestation. We analyzed by high throughput sequencing methods the composition of the bacterial community within the insect cadavers before the first emergences of IJs. These bacterial communities were generally characterized by one or two non-symbiont taxa. Even for highly lethal Steinernema-Xenorhabdus pairs, the symbiont does not dominate the bacterial community within the insect cadaver.


Assuntos
Microbiota , Rabditídios/fisiologia , Xenorhabdus/fisiologia , Animais , Enterobacteriaceae/fisiologia , Larva/microbiologia , Solo , Simbiose , Tenebrio/microbiologia
5.
PLoS One ; 14(10): e0212655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596856

RESUMO

Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.


Assuntos
Proteínas de Bactérias/metabolismo , Insetos/microbiologia , Nematoides/microbiologia , Photorhabdus/enzimologia , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Simbiose/fisiologia , Animais
6.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594811

RESUMO

Bacterial infections are often composed of cells with distinct phenotypes that can be produced by genetic or epigenetic mechanisms. This phenotypic heterogeneity has proved to be important in many pathogens, because it can alter both pathogenicity and transmission. We studied how and why it can emerge during infection in the bacterium Xenorhabdus nematophila, a pathogen that kills insects and multiplies in the cadaver before being transmitted by the soil nematode vector Steinernema carpocapsae We found that phenotypic variants cluster in three groups, one of which is composed of lrp defective mutants. These mutants, together with variants of another group, have in common that they maintain high survival during late stationary phase. This probably explains why they increase in frequency: variants of X. nematophila with a growth advantage in stationary phase (GASP) are under strong positive selection both in prolonged culture and in late infections. We also found that the within-host advantage of these variants seems to trade off against transmission by nematode vectors: the variants that reach the highest load in insects are those that are the least transmitted.IMPORTANCE Pathogens can evolve inside their host, and the importance of this mutation-fueled process is increasingly recognized. A disease outcome may indeed depend in part on pathogen adaptations that emerge during infection. It is therefore important to document these adaptations and the conditions that drive them. In our study, we took advantage of the possibility to monitor within-host evolution in the insect pathogen X. nematophila We demonstrated that selection occurring in aged infection favors lrp defective mutants, because these metabolic mutants benefit from a growth advantage in stationary phase (GASP). We also demonstrated that these mutants have reduced virulence and impaired transmission, modifying the infection outcome. Beyond the specific case of X. nematophila, we propose that metabolic mutants are to be found in other bacterial pathogens that stay for many generations inside their host.


Assuntos
Variação Biológica da População , Variação Genética , Infecções por Bactérias Gram-Negativas/veterinária , Insetos Vetores/microbiologia , Microbiota , Rabditídios/microbiologia , Xenorhabdus/fisiologia , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Mutação , Seleção Genética , Xenorhabdus/classificação , Xenorhabdus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA