Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(2): 829-837, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38173238

RESUMO

The mechanical and architectural properties of the three-dimensional (3D) tissue microenvironment can have large impacts on cellular behavior and phenotype, providing cells with specialized functions dependent on their location. This is especially apparent in macrophage biology where the function of tissue resident macrophages is highly specialized to their location. 3D bioprinting provides a convenient method of fabricating biomaterials that mimic specific tissue architectures. If these printable materials also possess tunable mechanical properties, they would be highly attractive for the study of macrophage behavior in different tissues. Currently, it is difficult to achieve mechanical tunability without sacrificing printability, scaffold porosity, and a loss in cell viability. Here, we have designed composite printable biomaterials composed of traditional hydrogels [nanofibrillar cellulose (cellulose) or methacrylated gelatin (gelMA)] mixed with porous polymeric high internal phase emulsion (polyHIPE) microparticles. By varying the ratio of polyHIPEs to hydrogel, we fabricate composite hydrogels that mimic the mechanical properties of the neural tissue (0.1-0.5 kPa), liver (1 kPa), lungs (5 kPa), and skin (10 kPa) while maintaining good levels of biocompatibility to a macrophage cell line.


Assuntos
Bioimpressão , Alicerces Teciduais , Porosidade , Engenharia Tecidual/métodos , Hidrogéis , Bioimpressão/métodos , Impressão Tridimensional , Materiais Biocompatíveis , Polímeros , Gelatina , Celulose , Técnicas de Cultura de Células em Três Dimensões
2.
Small ; 20(6): e2305052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798622

RESUMO

The rapid increase and spread of Gram-negative bacteria resistant to many or all existing treatments threaten a return to the preantibiotic era. The presence of bacterial polysaccharides that impede the penetration of many antimicrobials and protect them from the innate immune system contributes to resistance and pathogenicity. No currently approved antibiotics target the polysaccharide regions of microbes. Here, describe monolaurin-based niosomes, the first lipid nanoparticles that can eliminate bacterial polysaccharides from hypervirulent Klebsiella pneumoniae, are described. Their combination with polymyxin B shows no cytotoxicity in vitro and is highly effective in combating K. pneumoniae infection in vivo. Comprehensive mechanistic studies have revealed that antimicrobial activity proceeds via a multimodal mechanism. Initially, lipid nanoparticles disrupt polysaccharides, then outer and inner membranes are destabilized and destroyed by polymyxin B, resulting in synergistic cell lysis. This novel lipidic nanoparticle system shows tremendous promise as a highly effective antimicrobial treatment targeting multidrug-resistant Gram-negative pathogens.


Assuntos
Nanopartículas , Polimixina B , Polimixina B/farmacologia , Lipossomos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Klebsiella pneumoniae , Polissacarídeos Bacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
3.
J Orthop Translat ; 43: 1-13, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929240

RESUMO

Background: High post-surgical failure rates following tendon injury generate high medical costs and poor patient recovery. Cell-based tendon tissue engineering has the potential to produce fully functional replacement tissue and provide new strategies to restore tendon function and healing. In this endeavour, the application of mesenchymal stromal cells (MSCs) encapsulated in biomaterial scaffolds has shown great promise. However, a consensus on optimal promotion of tenogenic differentiation of MSCs has yet to be reached, although growth factors and mechanical cues are generally acknowledged as important factors. Methods: In this study, we prepared a hydrogel cell culture system consisting of methacrylated poly(d,l-lactic acid-ethylene glycol-d,l-lactic acid) (P(LA-EG-LA)) and gelatin methacrylate (GelMA) to encapsulate human bone marrow-derived MSCs (hBMSCs). We further systematically investigated the influence of static and intermittent cyclic uniaxial strain mechanical stimulation, in combination with transforming growth factor-ß3 (TGF-ß3) supplementation, on tenogenic differentiation of hBMSCs. Results: Increased TGF-ß3 concentration upregulated the tenogenic genes Scleraxis (SCX) and collagen type I (COL1A1) but showed no effects on tenascin-c (TNC) and collagen type III (COL3A1) expression. Mechanical stimulation had no observable effect on gene expression, but intermittent cyclic uniaxial strain stimulation improved matrix deposition. Together, these data provide new insights into how TGF-ß3 and mechanical stimulation regulate MSC tenogenesis, with TGF-ß3 promoting the expression of key tenogenic genes whilst mechanical stimulation aided matrix deposition in the engineered tissue. Furthermore, intermittent cyclic uniaxial strain at 3% elongation and 0.33 â€‹Hz for 1 â€‹h/day showed improved matrix effects compared to static strain. Conclusion: Together, the most promising result for tenogenic differentiation of hBMSCs was identified as treatment with 5 â€‹ng/ml TGF-ß3 under intermittent cyclic uniaxial strain (3% strain; 0.33 â€‹Hz; 1 â€‹h/day). This knowledge is of importance for the development of an improved protocol for tenogenic differentiation of MSCs and thereby for tendon tissue engineering. The translational potential of this article: Tissue-engineered strategies for tendon repair require a consensus on the differentiation of mesenchymal stromal cells to tenocytes, which is currently lacking. This article provides a systematic investigation of two main tenogenic differentiation conditions to further development of a tenogenic differentiation protocol.

4.
Chem Sci ; 14(32): 8466-8473, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37592997

RESUMO

A one-pass continuous flow strategy to form block copolymer nanoaggregates directly from monomers is presented. A key development towards such a sophisticated continuous flow setup is a significant improvement in continuous flow dialysis. Often impurities or solvent residues from polymerizations must be removed before block extensions or nanoaggregate formation can be carried out, typically disrupting the workflow. Hence, inline purification systems are required for fully continuous operation and eventual high throughput operation. An inline dialysis purification system is developed and exemplified for amphiphilic block copolymer synthesis from thermal and photoiniferter reversible addition fragmentation chain transfer (RAFT) polymerization. The inline dialysis system is found to be significantly faster than conventional batch dialysis and the kinetics are found to be very predictable with a diffusion velocity coefficient of 4.1 × 10-4 s-1. This is at least 4-5 times faster than conventional dialysis. Moreover, the newly developed setup uses only 57 mL of solvent for purification per gram of polymer, again reducing the required amount by almost an order of magnitude compared to conventional methods. Methyl methacrylate (MMA) or butyl acrylate (BA) was polymerized in a traditional flow reactor as the first block via RAFT polymerization, followed by a 'dialysis loop', which contains a custom-built inline dialysis device. Clearance of residual monomers is monitored via in-line NMR. The purified reaction mixture can then be chain extended in a second reactor stage to obtain block copolymers using poly(ethylene glycol) methyl ether acrylate (PEGMEA) as the second monomer. In the last step, nano-objects are created, again from flow processes. The process is highly tuneable, showing for the chosen model system a variation in nanoaggregate size from 34 nm to 188 nm.

5.
ACS Appl Mater Interfaces ; 15(8): 11141-11149, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799738

RESUMO

The functionalization of emulsion-templated porous polymers (polyHIPEs) utilizing modern and efficient chemistries is an important avenue for tailoring the properties of these scaffolds for specific and specialized applications. Herein, tetrazole photoclick chemistry is utilized for the efficient functionalization of polyHIPEs synthesized from various monomer systems and polymerization chemistries. Using both radical polymerization and thiol-ene polymerization, polyHIPEs with well-defined, interconnected open-cell morphologies are synthesized with tetrazole concentrations ranging from 0 to 5 w/v %, with the pore diameters ranging from 3 to 24 µm. Analyzed by fluorescence spectroscopy, FTIR spectroscopy, and confocal microscopy, spatially controlled functionalization to generate photopatterned fluorescent polyHIPEs is demonstrated via the reaction with residual acrylate and thiol groups. In addition, the scaffolds can be readily functionalized with external dipolarophiles such as acrylates to incorporate a functionality onto the polyHIPE surface. With many functional tetrazoles also reported in the literature, a PEG-tetrazole is also used to explore the photoinduced functionalization of polyHIPEs possessing tunable ratios of thiol and acrylate groups, and the effect on fluorescence, wettability, and biocompatibility is analyzed. Overall, the reaction is shown to be a broadly applicable tool for polyHIPE functionalization with many avenues for further development toward specific applications.

6.
Nanoscale ; 14(33): 11953-11962, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35899800

RESUMO

Accumulation of heavy metal ions, including copper ions (Cu2+), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited. Here, we focus on the detection of copper species in hexane, realising ultra-sensitive detection through a fluorescence-based approach. To achieve this, a novel macroporous composite material has been developed featuring luminescent CsPbBr3 nanocrystals (NCs) chemically adhered to a polymerized high internal phase emulsion (polyHIPE) substrate through surface thiol groups. Due to this thiol functionality, sub-monolayer NC formation is realised, which also renders outstanding stability of the composite in the ambient environment. Copper detection is achieved through a direct solution based immersion of the CsPbBr3-(SH)polyHIPE composite, which results in concentration-dependent quenching of the NC photoluminescence. This newly developed sensor has a limit of detection (LOD) for copper as low as 1 × 10-16 M, and a wide operating window spanning 10-2 to 10-16 M. Moreover, the composite exhibits excellent selectivity among different transition metals.

7.
Acta Biomater ; 145: 25-42, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470075

RESUMO

Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.


Assuntos
Células-Tronco Mesenquimais/citologia , Traumatismos dos Tendões/terapia , Tendões/fisiologia , Engenharia Tecidual , Adulto , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco , Traumatismos dos Tendões/patologia , Tendões/citologia , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
8.
Angew Chem Int Ed Engl ; 61(5): e202114536, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34861091

RESUMO

Diffusion-ordered NMR spectroscopy (DOSY) allows for accurate molecular weight calibration and determination that can be corrected for solvent influences. Polystyrene and poly(ethylene glycol) standards have been used to calibrate DOSY diffusion data for a variety of solvents, showing a high correlation of data when the bulk viscosity of the solvent is accounted for following the Stokes-Einstein equation. In this way, a type of universal calibration is introduced that allows for determinations of average molecular weight that are at least as accurate as those of traditional size-exclusion chromatography (SEC), if not better. Further, we demonstrate that DOSY calibrations can be used between laboratories, hence removing the need for individual calibration of setups as currently done.

9.
Biomacromolecules ; 23(3): 720-730, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34730348

RESUMO

Highly porous emulsion templated polymers (PolyHIPEs) provide a number of potential advantages in the fabrication of scaffolds for tissue engineering and regenerative medicine. Porosity enables cell ingrowth and nutrient diffusion within, as well as waste removal from, the scaffold. The properties offered by emulsion templating alone include the provision of high interconnected porosity, and, in combination with additive manufacturing, the opportunity to introduce controlled multiscale porosity to complex or custom structures. However, the majority of monomer systems reported for PolyHIPE preparation are unsuitable for clinical applications as they are nondegradable. Thiol-ene chemistry is a promising route to produce biodegradable photocurable PolyHIPEs for the fabrication of scaffolds using conventional or additive manufacturing methods; however, relatively little research has been reported on this approach. This study reports the groundwork to fabricate thiol- and polycaprolactone (PCL)-based PolyHIPE materials via a photoinitiated thiolene click reaction. Two different formulations, either three-arm PCL methacrylate (3PCLMA) or four-arm PCL methacrylate (4PCLMA) moieties, were used in the PolyHIPE formulation. Biocompatibility of the PolyHIPEs was investigated using human dermal fibroblasts (HDFs) and human osteosarcoma cell line (MG-63) by DNA quantification assay, and developed PolyHIPEs were shown to be capable of supporting cell attachment and viability.


Assuntos
Metacrilatos , Engenharia Tecidual , Emulsões , Humanos , Metacrilatos/química , Poliésteres , Polímeros/química , Porosidade , Estirenos , Compostos de Sulfidrila , Engenharia Tecidual/métodos , Alicerces Teciduais/química
10.
Acta Biomater ; 135: 64-86, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492374

RESUMO

Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.


Assuntos
Regeneração Tecidual Guiada , Traumatismos dos Nervos Periféricos , Animais , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos , Alicerces Teciduais
11.
Polymers (Basel) ; 13(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071683

RESUMO

High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.

12.
Small ; 16(39): e2003269, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864831

RESUMO

Skin-like energy devices can be conformally attached to the human body, which are highly desirable to power soft wearable electronics in the future. Here, a skin-like stretchable fuel cell based on ultrathin gold nanowires (AuNWs) and polymerized high internal phase emulsions (polyHIPEs) scaffolds is demonstrated. The polyHIPEs can offer a high porosity of 80% yet with an overall thickness comparable to human skin. Upon impregnation with electronic inks containing ultrathin (2 nm in diameter) and ultrahigh aspect-ratio (>10 000) gold nanowires, skin-like strain-insensitive stretchable electrodes are successfully fabricated. With such designed strain-insensitive electrodes, a stretchable fuel cell is fabricated by using AuNWs@polyHIPEs, platinum (Pt)-modified AuNWs@polyHIPEs, and ethanol as the anode, cathode, and fuel, respectively. The resulting epidermal fuel cell can be patterned and transferred onto skin as "tattoos" yet can offer a high power density of 280 µW cm-2 and a high durability (>90% performance retention under stretching, compression, and twisting). The results presented here demonstrate that this skin-thin, porous, yet stretchable electrode is essentially multifunctional, simultaneously serving as a current collector, an electrocatalyst, and a fuel host, indicating potential applications to power future soft wearable 2.0 electronics for remote healthcare and soft robotics.

13.
Macromol Rapid Commun ; 41(18): e2000366, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32757259

RESUMO

Catechol-Fe(III) complexes contain some of the strongest known metal-chelate coordination bonds. Despite this, they have until now not been utilized in (polymeric linker) linear coordination polymer (LCP) synthesis. With the view of generating catechol end-functional polymers, a new, symmetrical bis-catechol functionalized trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agent is synthesized (CatDMAT). Acrylamide (AM) and dimethylacrylamide (DMA) polymerizations are conducted with CatDMAT using direct photoactivation RAFT polymerization to yield bis-catechol end-functionalized homo- and block-copolymers of molecular weight 10-15 kDa. Catechol-Fe(III) LCPs are successfully formed from the telechelic catechol polymers by bis-complexation to Fe(III). The tetrahedral bis-complex is detected by UV-vis spectroscopy (λmax  = 570 nm), while increases in relative viscosity and Mn,GPC over their respective uncomplexed polymers confirm the occurrence of supramolecular polymerization. The catechol-LCPs are shown to undergo oxidation and crosslinking in aqueous solution after 24 h.


Assuntos
Compostos Férricos , Polímeros , Catecóis , Peso Molecular , Polimerização
14.
ACS Appl Mater Interfaces ; 12(38): 42669-42677, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842723

RESUMO

Three-dimensional dendritic nanostructured carbon florets (NCFs) with tailored porosity are demonstrated as electrochemically versatile electrodes for both adsorptive and intercalative energy storage pathways. Achieved through a single-step template-driven approach, the NCFs exhibit turbostratic graphitic lamellae in a floral assembly leading to high specific surface area and multi-modal pore distribution (920 m2/g). The synergism in structural and chemical frameworks, along with open-ended morphology, enables bifunctionality of hard carbon NCFs as symmetric adsorptive electrodes for supercapacitors (SCs) and intercalation anodes for hybrid potassium-ion capacitors (KICs). Flexible, all-solid-state SCs through facile integration of NCF with the ionic-liquid-imbibed porous polymeric matrix achieve high-energy density (20 W h/kg) and power density (32.7 kW/kg) without compromising on mechanical flexibility and cyclability (94% after 20k cycles). Furthermore, NCF as an anode in a full-cell hybrid KIC (activated carbon as cathode) delivers excellent electrochemical performance with maximum energy and power densities of 57 W h/kg and 12.5 kW/kg, respectively, when cycled in a potential window of 1.0-4.0 V. The exceptional bifunctional performance of NCF highlights the possibility of utilizing such engineered nanocarbons for high-performance energy storage devices.

15.
Pharmaceutics ; 12(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708811

RESUMO

Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.

16.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630398

RESUMO

Engineered dermal templates have revolutionised the repair and reconstruction of skin defects. Their interaction with the wound microenvironment and linked molecular mediators of wound repair is still not clear. This study investigated the wound bed and acellular "off the shelf" dermal template interaction in a mouse model. Full-thickness wounds in nude mice were grafted with allogenic skin, and either collagen-based or fully synthetic dermal templates. Changes in the wound bed showed significantly higher vascularisation and fibroblast infiltration in synthetic grafts when compared to collagen-based grafts (P ≤ 0.05). Greater tissue growth was associated with higher prostaglandin-endoperoxide synthase 2 (Ptgs2) RNA and cyclooxygenase-2 (COX-2) protein levels in fully synthetic grafts. Collagen-based grafts had higher levels of collagen III and matrix metallopeptidase 2. To compare the capacity to form a double layer skin substitute, both templates were seeded with human fibroblasts and keratinocytes (so-called human skin equivalent or HSE). Mice were grafted with HSEs to test permanent wound closure with no further treatment required. We found the synthetic dermal template to have a significantly greater capacity to support human epidermal cells. In conclusion, the synthetic template showed advantages over the collagen-based template in a short-term mouse model of wound repair.


Assuntos
Transplante de Pele/métodos , Pele Artificial/tendências , Animais , Colágeno/metabolismo , Modelos Animais de Doenças , Epiderme , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pele/lesões , Dermatopatias/metabolismo , Cicatrização/fisiologia
17.
Langmuir ; 36(6): 1538-1551, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31968943

RESUMO

The flocculation efficiency of polyelectrolytes in a high-ionic-strength environment is often affected and reduced due to shielding of the active ionizable functional groups, as well as changes in the surface chemistry of the solid slurry. To address this problem, a series of well-defined novel ABA triblock copolymers were employed for the flocculation of high-ionic-strength kaolin slurries at three different Ca2+ concentrations (0.05, 0.10, and 0.50 M). The primary focus was on the advancement in the polymer architecture, where the anionic functionalities were localized at the terminal ends. Typical commercial flocculants tend to have anionic functionalities randomly distributed throughout the polymer chain and hence a higher propensity toward condensed conformation and formation of insoluble species. In comparison to a control random copolymer, the ABA triblock copolymers were able to flocculate kaolin slurries to give faster settlement rates, particularly at the high Ca2+ concentrations of 0.10 and 0.50 M. In addition, these polymers had significantly better clarification ability at higher Ca2+ concentrations compared to the control random copolymer. The ABA triblock copolymer architecture may therefore have potential as a flocculant in high-ionic-strength applications.

18.
Acta Biomater ; 101: 102-116, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31610339

RESUMO

This study investigates the utility of a tailored poly(ethylene glycol) diacrylate-crosslinked porous polymeric tissue engineering scaffold, with mechanical properties specifically optimised to be comparable to that of mammalian brain tissue for 3D human neural cell culture. Results obtained here demonstrate the attachment, proliferation and terminal differentiation of both human induced pluripotent stem cell- and embryonic stem cell-derived neural precursor cells (hPSC-NPCs) throughout the interconnected porous network within laminin-coated scaffolds. Phenotypic data and functional analyses are presented demonstrating that this material supports terminal in vitro neural differentiation of hPSC-NPCs to a mixed population of viable neuronal and glial cells for periods of up to 49 days. This is evidenced by the upregulation of TUBB3, MAP2, SYP and GFAP gene expression, as well as the presence of the proteins ßIII-TUBULIN, NEUN, MAP2 and GFAP. Functional maturity of neural cells following 49 days 3D differentiation culture was tested via measurement of intracellular calcium. These analyses revealed spontaneously active, synchronous and rhythmic calcium flux, as well as response to the neurotransmitter glutamate. This tailored construct has potential application as an improved in vitro human neurogenesis model with utility in platform drug discovery programs. STATEMENT OF SIGNIFICANCE: The interconnected porosity of polyHIPE scaffolds exhibits the ability to support three-dimensional neural cell network formation due to limited resistance to cellular migration and re-organisation. The previously developed scaffold material displays mechanical properties similar to that of the mammalian brain. This research also employs the utility of pluripotent stem cell-derived neural cells which are of greater clinical relevance than primary neural cell lines. This scaffold material has future potential in better mimicking three-dimensional neural networks found in the human brain and may result in improved in vitro models for disease modelling and drug screening applications.


Assuntos
Antígenos de Diferenciação/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Alicerces Teciduais/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Porosidade
19.
Chem Sci ; 10(24): 6174-6183, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31360424

RESUMO

Ultra-high molecular weight (UHMW, M n > 1000 kDa) polymeric drift control adjuvants (DCAs) for agricultural spraying are prone to mechanical degradation and rapidly lose performance. To overcome this, we have designed linear coordination polymers (LCPs) composed of 400 kDa telechelic bis-terpyridine end-functionalised polyacrylamide units, which 'self-heal' upon shearing through reformation of coordination bonds. After addition of Fe(ii) to dilute aqueous solutions of the terpyridine telechelics, UHMW LCPs were obtained as demonstrated by UV-vis spectroscopy, MALS GPC and intrinsic viscosity measurements. Importantly, these UHMW LCPs were shown to function as effective DCAs, reducing the formation of fine 'driftable' droplets during spray testing at concentrations as low as 100 ppm. Following mechanically-induced coordination bond-scission, the UHMW LCPs were found to recover up to 90% of their performance compared to un-sheared samples, at a rate dependent on the transition metal ion used to form the complex.

20.
Biomacromolecules ; 20(3): 1297-1307, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30694656

RESUMO

A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) (PDMS) macro-chain transfer agent (macroCTA) and postpolymerization modification was used to marry the hydrophobic and highly flexible properties of PDMS with the biological activity of glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA ( Mn,th ≈ 4900 g·mol-1, D = 1.1) to prepare well-defined PDMS- b-pBEA diblock copolymers ( D = 1.1) that were then substituted with 1-thio-ß-d-glucose or 1-thio-ß-d-galactose under facile conditions to yield PDMS- b-glycopolymers. Compositions possessing ≈25% of the glycopolymer block (by mass) were able to adopt a vesicular morphology in aqueous solution (≈210 nm in diameter), as indicated by TEM and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective binding with the lectin concanavalin A (Con A), as demonstrated by turbidimetric experiments. Self-assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs (ranging from 2-20 µm in diameter). Interaction of these cell-sized polymersomes with fimH positive E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to modulate the response of these synthetic cell mimics (protocells) toward biological entities through exploitation of selective ligand-receptor interactions, which may be readily tuned through a considered choice of carbohydrate functionality.


Assuntos
Dimetilpolisiloxanos/química , Escherichia coli/química , Polímeros/química , Glicosilação , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nefelometria e Turbidimetria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA