Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Prolif ; 57(6): e13606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38454614

RESUMO

Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Microglia , Microambiente Tumoral , Humanos , Glioblastoma/radioterapia , Glioblastoma/patologia , Glioblastoma/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos da radiação , Proliferação de Células/efeitos da radiação , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Microambiente Tumoral/efeitos da radiação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396757

RESUMO

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Assuntos
Glioblastoma , Transportador de Glucose Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipóxia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
3.
Biomedicines ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453557

RESUMO

In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.

4.
Radiat Oncol ; 17(1): 77, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428301

RESUMO

BACKGROUND: There is currently significant interest in assessing the role of oxygen in the radiobiological effects at ultra-high dose rates. Oxygen modulation is postulated to play a role in the enhanced sparing effect observed in FLASH radiotherapy, where particles are delivered at 40-1000 Gy/s. Furthermore, the development of laser-driven accelerators now enables radiobiology experiments in extreme regimes where dose rates can exceed 109 Gy/s, and predicted oxygen depletion effects on cellular response can be tested. Access to appropriate experimental enviroments, allowing measurements under controlled oxygenation conditions, is a key requirement for these studies. We report on the development and application of a bespoke portable hypoxia chamber specifically designed for experiments employing laser-driven sources, but also suitable for comparator studies under FLASH and conventional irradiation conditions. MATERIALS AND METHODS: We used oxygen concentration measurements to test the induction of hypoxia and the maintenance capacity of the chambers. Cellular hypoxia induction was verified using hypoxia inducible factor-1α immunostaining. Calibrated radiochromic films and GEANT-4 simulations verified the dosimetry variations inside and outside the chambers. We irradiated hypoxic human skin fibroblasts (AG01522B) cells with laser-driven protons, conventional protons and reference 225 kVp X-rays to quantify DNA DSB damage and repair under hypoxia. We further measured the oxygen enhancement ratio for cell survival after X-ray exposure in normal fibroblast and radioresistant patient- derived GBM stem cells. RESULTS: Oxygen measurements showed that our chambers maintained a radiobiological hypoxic environment for at least 45 min and pathological hypoxia for up to 24 h after disconnecting the chambers from the gas supply. We observed a significant reduction in the 53BP1 foci induced by laser-driven protons, conventional protons and X-rays in the hypoxic cells compared to normoxic cells at 30 min post-irradiation. Under hypoxic irradiations, the Laser-driven protons induced significant residual DNA DSB damage in hypoxic AG01522B cells compared to the conventional dose rate protons suggesting an important impact of these extremely high dose-rate exposures. We obtained an oxygen enhancement ratio (OER) of 2.1 ± 0.1 and 2.5 ± 0.1 respectively for the AG01522B and patient-derived GBM stem cells for X-ray irradiation using our hypoxia chambers. CONCLUSION: We demonstrated the design and application of portable hypoxia chambers for studying cellular radiobiological endpoints after exposure to laser-driven protons at ultra-high dose, conventional protons and X-rays. Suitable levels of reduced oxygen concentration could be maintained in the absence of external gassing to quantify hypoxic effects. The data obtained provided indication of an enhanced residual DNA DSB damage under hypoxic conditions at ultra-high dose rate compared to the conventional protons or X-rays.


Assuntos
Prótons , Radiobiologia , DNA/efeitos da radiação , Humanos , Hipóxia , Lasers , Oxigênio
5.
J Pers Med ; 12(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207800

RESUMO

Despite all the recent pharmacological advances and the introduction of targeted therapies in clinical practice, cancer still remains one of the leading cause of death, accounting for 10 million deaths per year, based on the most recent reports [...].

6.
Life (Basel) ; 11(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34833068

RESUMO

The rapid improvement of space technologies is leading to the continuous increase of space missions that will soon bring humans back to the Moon and, in the coming future, toward longer interplanetary missions such as the one to Mars. The idea of living in space is charming and fascinating; however, the space environment is a harsh place to host human life and exposes the crew to many physical challenges. The absence of gravity experienced in space affects many aspects of human biology and can be reproduced in vitro with the help of microgravity simulators. Simulated microgravity (s-µg) is applied in many fields of research, ranging from cell biology to physics, including cancer biology. In our study, we aimed to characterize, at the biological and mechanical level, a Random Positioning Machine in order to simulate microgravity in an in vitro model of Triple-Negative Breast Cancer (TNBC). We investigated the effects played by s-µg by analyzing the change of expression of some genes that drive proliferation, survival, cell death, cancer stemness, and metastasis in the human MDA-MB-231 cell line. Besides the mechanical verification of the RPM used in our studies, our biological findings highlighted the impact of s-µg and its putative involvement in cancer progression.

7.
J Pers Med ; 11(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923454

RESUMO

In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI's hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.

8.
Cancers (Basel) ; 12(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020459

RESUMO

Advances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.

9.
Int J Mol Sci ; 21(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882850

RESUMO

Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Prótons , Neoplasias de Mama Triplo Negativas/radioterapia , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486205

RESUMO

Glioblastoma (GBM) is one of the most lethal types of tumor due to its high recurrence level in spite of aggressive treatment regimens involving surgery, radiotherapy and chemotherapy. Hypoxia is a feature of GBM, involved in radioresistance, and is known to be at the origin of treatment failure. The aim of this work was to assess the therapeutic potential of a new targeted c-SRC inhibitor molecule, named Si306, in combination with X-rays on the human glioblastoma cell lines, comparing normoxia and hypoxia conditions. For this purpose, the dose modifying factor and oxygen enhancement ratio were calculated to evaluate the Si306 radiosensitizing effect. DNA damage and the repair capability were also studied from the kinetic of γ-H2AX immunodetection. Furthermore, motility processes being supposed to be triggered by hypoxia and irradiation, the role of c-SRC inhibition was also analyzed to evaluate the migration blockage by wound healing assay. Our results showed that inhibition of the c-SRC protein enhances the radiotherapy efficacy both in normoxic and hypoxic conditions. These data open new opportunities for GBM treatment combining radiotherapy with molecularly targeted drugs to overcome radioresistance.


Assuntos
Neoplasias Encefálicas/enzimologia , Glioblastoma/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Histonas/metabolismo , Humanos , Hipóxia , Cinética , Microscopia de Fluorescência , Recidiva Local de Neoplasia/tratamento farmacológico , Prognóstico , Radiação Ionizante , Radioterapia , Raios X , Quinases da Família src/metabolismo
11.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652849

RESUMO

The improvement of diagnostic techniques and the efficacy of new therapies in clinical practice have allowed cancer patients to reach a higher chance to be cured together with a better quality of life. However, tumors still represent the second leading cause of death worldwide. On the contrary, chemotherapy and radiotherapy (RT) still lack treatment plans which take into account the biological features of tumors and depend on this for their response to treatment. Tumor cells' response to RT is strictly-connected to their radiosensitivity, namely, their ability to resist and to overcome cell damage induced by ionizing radiation (IR). For this reason, radiobiological research is focusing on the ability of chemical compounds to radiosensitize cancer cells so to make them more responsive to IR. In recent years, the interests of researchers have been focused on natural compounds that show antitumoral effects with limited collateral issues. Moreover, nutraceuticals are easy to recover and are thus less expensive. On these bases, several scientific projects have aimed to test also their ability to induce tumor radiosensitization both in vitro and in vivo. The goal of this review is to describe what is known about the role of nutraceuticals in radiotherapy, their use and their potential application.


Assuntos
Suplementos Nutricionais , Neoplasias/radioterapia , Radiossensibilizantes/administração & dosagem , Radioterapia/métodos , Animais , Humanos
12.
Int J Mol Sci ; 20(19)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554327

RESUMO

Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Terapia com Prótons , Quinases da Família src/antagonistas & inibidores , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Concentração Inibidora 50 , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Radiat Res ; 60(4): 451-465, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135901

RESUMO

Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome.


Assuntos
Neoplasias da Mama/radioterapia , Mama/efeitos da radiação , Prótons , Linhagem Celular Tumoral , DNA Complementar/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Inflamação , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Terapia com Prótons , Tolerância a Radiação/genética , Radioterapia
14.
Anticancer Res ; 38(5): 2707-2715, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29715090

RESUMO

BACKGROUND/AIM: In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. MATERIALS AND METHODS: We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. RESULTS: We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. CONCLUSION: Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan.


Assuntos
Neoplasias da Mama/genética , Elétrons/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioterapia de Alta Energia , Transcriptoma , Biomarcadores Tumorais , Neoplasias da Mama/patologia , DNA Complementar/genética , Relação Dose-Resposta à Radiação , Feminino , Humanos , Cuidados Intraoperatórios , Tolerância a Radiação , Reação em Cadeia da Polimerase em Tempo Real , Análise Serial de Tecidos , Células Tumorais Cultivadas , Sequenciamento Completo do Genoma
15.
Proteomics ; 16(4): 645-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26698593

RESUMO

In the skeletal muscle, the ageing process is characterized by a loss of muscle mass and strength, coupled with a decline of mitochondrial function and a decrease of satellite cells. This profile is more pronounced in hindlimb than in forelimb muscles, both in humans and in rodents. Utilizing light and electron microscopy, myosin heavy chain isoform distribution, proteomic analysis by 2D-DIGE, MALDI-TOF MS and quantitative immunoblotting, this study analyzes the protein levels and the nuclear localization of specific molecules, which can contribute to a preferential muscle loss. Our results identify the molecular changes in the hindlimb (gastrocnemius) and forelimb (triceps) muscles during ageing in rats (3- and 22-month-old). Specifically, the oxidative metabolism contributes to tissue homeostasis in triceps, whereas respiratory chain disruption and oxidative-stress-induced damage imbalance the homeostasis in gastrocnemius muscle. High levels of dihydrolipoyllysine-residue acetyltransferase (Dlat) and ATP synthase subunit alpha (Atp5a1) are detected in triceps and gastrocnemius, respectively. Interestingly, in triceps, both molecules are increased in the nucleus in aged rats and are associated to an increased protein acetylation and myoglobin availability. Furthermore, autophagy is retained in triceps whereas an enhanced fusion, decrement of mitophagy and of regenerative potential is observed in aged gastrocnemius muscle.


Assuntos
Envelhecimento , Proteínas Musculares/análise , Músculo Esquelético/patologia , Doenças Musculares/patologia , Animais , Autofagia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia , Doenças Musculares/metabolismo , Cadeias Pesadas de Miosina/análise , Cadeias Pesadas de Miosina/metabolismo , Proteômica , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Eletroforese em Gel Diferencial Bidimensional
16.
Anticancer Res ; 35(5): 2577-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25964533

RESUMO

BACKGROUND: Intraoperative electron radiation therapy (IOERT) is a therapeutic technique which administers a single high dose of ionizing radiation immediately after surgical tumor removal. IOERT induces a strong stress response: both tumor and normal cells activating pro- and antiproliferative cell signaling pathways. Following treatment, several genes and factors are differently modulated, producing an imbalance in cell fate decision. However, the contribution of these genes and pathways in conferring different cell radiosensitivity and radioresistance needs to be further investigated, in particular after high-dose treatments. Despite the documented and great impact of IOERT in breast cancer care, and the trend for dose escalation, very limited data are available regarding gene-expression profiles and cell networks activated by IOERT or high-dose treatment. The aim of the study was to analyze the main pathways activated following high radiation doses in order to select for potential new biomarkers of radiosensitivity or radioresistance, as well as to identify therapeutic targets useful in cancer care. MATERIALS AND METHODS: We performed gene-expression profiling of the MCF7 human breast carcinoma cell line after treatment with 9- and 23-Gy doses (conventionally used during IOERT boost and exclusive treatments, respectively) by cDNA microarrays. Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), immunofluorescence and immunoblot experiments were performed to validate candidate IOERT biomarkers. We also conducted clonogenic tests and cellular senescence assays to monitor for radiation-induced effects. RESULTS: The analyses highlighted a transcriptome dependent on the dose delivered and a number of specific key genes that may be proposed as new markers of radiosensitivity. Cell and molecular traits observed in MCF7 cells revealed a typical senescent phenotype associated with cell proliferation arrest after treatments with 9- and 23-Gy doses. CONCLUSION: In this study, we report genes and cellular networks activated following high-dose IOERT. The selected validated genes were used to design two descriptive models for each dose delivered. We believe that this study could contribute to the understanding over the complex mechanisms which regulate cell radiosensitivity and radioresistance in order to improve personalized radiotherapeutic treatment.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Tolerância a Radiação/genética , Radiação Ionizante , Neoplasias da Mama/patologia , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Células MCF-7 , Análise de Sequência com Séries de Oligonucleotídeos
17.
BMC Res Notes ; 8: 30, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25648366

RESUMO

BACKGROUND: Osteoarthritis (OA) is a degenerative joints disorder influenced by genetic predisposition. We reported that rs11718863 DVWA SNP was represented in Sicilian with a more severe Kellgren and Lawrence (KL) radiographic grade, displaying its predictive role as OA marker progression. Here, we describe the DVWA SNPs: rs11718863, rs7639618, rs7651842, rs7639807 and rs17040821 probably able to induce protein functional changes. FINDINGS: Sixty-one Sicilian patients with knee OA and 100 healthy subjects were enrolled. Clinical and radiographic evaluation was performed using AKSS scores and KL. Linkage Disequilibrium (LD) analyses were performed in order to verify whether the SNPs segregate as haplotype. All DVWA SNPs'MinorAllele Frequencies (MAF) were greater than in the European. The rs7639618 SNP showed a statistical association with KL. Our analyses show that a LD exists among rs11718863 and rs7639618, as well as between rs7651842, rs7639807 and rs17040821 SNPs. We also observed that three out of the 161 individuals investigated were simultaneously homozygous carriers of the rs7651842, rs7639807 and rs17040821 MAF alleles. CONCLUSIONS: In summary, the purpose of this preliminary research was to highlight possible associations between DVWA SNPs and OA clinical and radiographic data. This work represents a multidisciplinary medicine approach to study OA where clinical, radiological and genetic evaluation could contribute to better define OA grading.


Assuntos
Colágeno Tipo VI/genética , Predisposição Genética para Doença , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único , Pseudogenes/genética , Idoso , Idoso de 80 Anos ou mais , Alelos , Feminino , Frequência do Gene , Haplótipos , Homozigoto , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/etnologia , Osteoartrite do Joelho/patologia , Sicília , População Branca
18.
Biomed Eng Online ; 13: 71, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24903282

RESUMO

BACKGROUND: We aimed to investigate the effect of cell-cell dipole interactions in the equilibrium distributions in dielectrophoretic devices. METHODS: We used a three dimensional coupled Monte Carlo-Poisson method to theoretically study the final distribution of a system of uncharged polarizable particles suspended in a static liquid medium under the action of an oscillating non-uniform electric field generated by polynomial electrodes. The simulated distributions have been compared with experimental ones observed in the case of MDA-MB-231 cells in the same operating conditions. RESULTS: The real and simulated distributions are consistent. In both cases the cells distribution near the electrodes is dominated by cell-cell dipole interactions which generate long chains. CONCLUSIONS: The agreement between real and simulated cells' distributions demonstrate the method's reliability. The distribution are dominated by cell-cell dipole interactions even at low density regimes (105 cell/ml). An improved estimate for the density threshold governing the interaction free regime is suggested.


Assuntos
Comunicação Celular , Eletroforese/instrumentação , Algoritmos , Linhagem Celular Tumoral , Impedância Elétrica , Eletrodos , Humanos , Método de Monte Carlo , Distribuição de Poisson
19.
Arthritis Res Ther ; 16(2): R91, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24716474

RESUMO

INTRODUCTION: Osteoarthritis (OA) is considered to be a multifactorial and polygenic disease and diagnosis is mainly clinical and radiological. Correlation between radiographic data and clinical status has been reported. However, very few studies, especially in Caucasian people, describe the association between the Kellgren and Lawrence OA grading scale (KL) and genetic alterations to better understand OA etiopathogenesis and susceptibility. In order to update the knee OA grading, in this study we assessed the associations between KL grade, clinical features such as American Knee Society Score (AKSS), age, and polymorphisms in the principal osteoarthritis susceptibility (OS) genes in Sicilian individuals. METHODS: In 66 Sicilian individuals affected by primary knee OA, the clinical and radiographic evaluation was performed using 2 sub-scores of AKSS (knee score (KS) and function score (FS)) and KL. The patients were also classified according to age. Online Mendelian Inheritance in Man (OMIM) and Database of Single Nucleotide Polymorphisms (dbSNP) Short Genetic Variations databases were used to select gene regions containing the following polymorphisms to analyze: FRZB rs288326 and rs7775, MATN3 rs77245812, ASPN D14 repeats, PTHR2 rs76758470, GDF5 rs143383 and DVWA rs11718863. Patient genotypes were obtained using Sanger DNA sequencing analysis. RESULTS: In our cohort of patients a statistical association between the variables analyzed was reported in all associations tested (KL versus KS, FS and age). We observed that a mild to severe OA radiographic grade is related to severe clinical conditions and loss of articular function and that the severity of symptoms increases with age. Concerning the genotyping analysis, our results revealed a significant statistical association between KL grading and GDF5 rs143383 and DVWA rs11718863 genetic alterations. The latter was also associated with a more severe radiographic grade, displaying its predictive role as OA marker progression. Statistically significant association between clinical, radiographic and genetic signs observed, suggests extending the actual grading of knee OA based mainly on X-ray features. CONCLUSIONS: This work represents a multidisciplinary and translational medicine approach to study OA where clinical, radiological, and OS5 and OS6 SNPs evaluation could contribute to better define grading and progression of OA and to the development of new therapies.


Assuntos
Predisposição Genética para Doença/genética , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Radiografia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Exp Clin Cancer Res ; 32: 23, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23631762

RESUMO

BACKGROUND: Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of studies, sometimes controversial, describe possible associations between FDG uptake and single nucleotide polymorphisms (SNPs). For this reason this field has to be explored and clarified. We investigated the association of SNPs in GLUT1, HIF-1a, EPAS1, APEX1, VEGFA and MTHFR genes with the FDG uptake in BC. METHODS: In 26 caucasian individuals with primary BC, whole-body PET-CT scans were obtained and quantitative analysis was performed by calculating the maximum Standardized Uptake Value normalized to body-weight (SUVmax) and the mean SUV normalized to body-weight corrected for partial volume effect (SUVpvc). Human Gene Mutation Database and dbSNP Short Genetic Variations database were used to analyze gene regions containing the selected SNPs. Patient genotypes were obtained using Sanger DNA sequencing analysis performed by Capillary Electrophoresis. RESULTS: BC patients were genotyped for the following nine SNPs: GLUT1: rs841853 and rs710218; HIF-1a: rs11549465 and rs11549467; EPAS1: rs137853037 and rs137853036; APEX1: rs1130409; VEGFA: rs3025039 and MTHFR: rs1801133. In this work correlations between the nine potentially useful polymorphisms selected and previously suggested with tracer uptake (using both SUVmax and SUVpvc) were not found. CONCLUSIONS: The possible functional influence of specific SNPs on FDG uptake needs further studies in human cancer. In summary, this is the first pilot study, to our knowledge, which investigates the association between a large panel of SNPs and FDG uptake specifically in BC patients. This work represents a multidisciplinary and translational medicine approach to study BC where, the possible correlation between SNPs and tracer uptake, may be considered to improve personalized cancer treatment and care.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fluordesoxiglucose F18/farmacocinética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Genótipo , Humanos , Imagem Multimodal , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA