Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104815, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178918

RESUMO

Ceramides have been shown to play a major role in the onset of skeletal muscle insulin resistance and therefore in the prevalence of type 2 diabetes. However, many of the studies involved in the discovery of deleterious ceramide actions used a nonphysiological, cell-permeable, short-chain ceramide analog, the C2-ceramide (C2-cer). In the present study, we determined how C2-cer promotes insulin resistance in muscle cells. We demonstrate that C2-cer enters the salvage/recycling pathway and becomes deacylated, yielding sphingosine, re-acylation of which depends on the availability of long chain fatty acids provided by the lipogenesis pathway in muscle cells. Importantly, we show these salvaged ceramides are actually responsible for the inhibition of insulin signaling induced by C2-cer. Interestingly, we also show that the exogenous and endogenous monounsaturated fatty acid oleate prevents C2-cer to be recycled into endogenous ceramide species in a diacylglycerol O-acyltransferase 1-dependent mechanism, which forces free fatty acid metabolism towards triacylglyceride production. Altogether, the study highlights for the first time that C2-cer induces a loss in insulin sensitivity through the salvage/recycling pathway in muscle cells. This study also validates C2-cer as a convenient tool to decipher mechanisms by which long-chain ceramides mediate insulin resistance in muscle cells and suggests that in addition to the de novo ceramide synthesis, recycling of ceramide could contribute to muscle insulin resistance observed in obesity and type 2 diabetes.


Assuntos
Ceramidas , Resistência à Insulina , Humanos , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Musculares/metabolismo , Músculo Esquelético/metabolismo
2.
Diabetologia ; 63(2): 395-409, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31796987

RESUMO

AIMS/HYPOTHESIS: During the onset of type 2 diabetes, excessive dietary intake of saturated NEFA and fructose lead to impaired insulin production and secretion by insulin-producing pancreatic beta cells. The majority of data on the deleterious effects of lipids on functional beta cell mass were obtained either in vivo in rodent models or in vitro using rodent islets and beta cell lines. Translating data from rodent to human beta cells remains challenging. Here, we used the human beta cell line EndoC-ßH1 and analysed its sensitivity to a lipotoxic and glucolipotoxic (high palmitate with or without high glucose) insult, as a way to model human beta cells in a type 2 diabetes environment. METHODS: EndoC-ßH1 cells were exposed to palmitate after knockdown of genes related to saturated NEFA metabolism. We analysed whether and how palmitate induces apoptosis, stress and inflammation and modulates beta cell identity. RESULTS: EndoC-ßH1 cells were insensitive to the deleterious effects of saturated NEFA (palmitate and stearate) unless stearoyl CoA desaturase (SCD) was silenced. SCD was abundantly expressed in EndoC-ßH1 cells, as well as in human islets and human induced pluripotent stem cell-derived beta cells. SCD silencing induced markers of inflammation and endoplasmic reticulum stress and also IAPP mRNA. Treatment with the SCD products oleate or palmitoleate reversed inflammation and endoplasmic reticulum stress. Upon SCD knockdown, palmitate induced expression of dedifferentiation markers such as SOX9, MYC and HES1. Interestingly, SCD knockdown by itself disrupted beta cell identity with a decrease in mature beta cell markers INS, MAFA and SLC30A8 and decreased insulin content and glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION: The present study delineates an important role for SCD in the protection against lipotoxicity and in the maintenance of human beta cell identity. DATA AVAILABILITY: Microarray data and all experimental details that support the findings of this study have been deposited in in the GEO database with the GSE130208 accession code.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ácido Palmítico/farmacologia , Estearoil-CoA Dessaturase/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Secreção de Insulina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição HES-1/metabolismo
3.
Diabetologia ; 61(8): 1780-1793, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29754287

RESUMO

AIMS/HYPOTHESIS: Dietary n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), are known to influence glucose homeostasis. We recently showed that Elovl2 expression in beta cells, which regulates synthesis of endogenous DHA, was associated with glucose tolerance and played a key role in insulin secretion. The present study aimed to examine the role of the very long chain fatty acid elongase 2 (ELOVL2)/DHA axis on the adverse effects of palmitate with high glucose, a condition defined as glucolipotoxicity, on beta cells. METHODS: We detected ELOVL2 in INS-1 beta cells and mouse and human islets using quantitative PCR and western blotting. Downregulation and adenoviral overexpression of Elovl2 was carried out in beta cells. Ceramide and diacylglycerol levels were determined by radio-enzymatic assay and lipidomics. Apoptosis was quantified using caspase-3 assays and poly (ADP-ribose) polymerase cleavage. Palmitate oxidation and esterification were determined by [U-14C]palmitate labelling. RESULTS: We found that glucolipotoxicity decreased ELOVL2 content in rodent and human beta cells. Downregulation of ELOVL2 drastically potentiated beta cell apoptosis induced by glucolipotoxicity, whereas adenoviral Elovl2 overexpression and supplementation with DHA partially inhibited glucolipotoxicity-induced cell death in rodent and human beta cells. Inhibition of beta cell apoptosis by the ELOVL2/DHA axis was associated with a decrease in ceramide accumulation. However, the ELOVL2/DHA axis was unable to directly alter ceramide synthesis or metabolism. By contrast, DHA increased palmitate oxidation but did not affect its esterification. Pharmacological inhibition of AMP-activated protein kinase and etomoxir, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), the rate-limiting enzyme in fatty acid ß-oxidation, attenuated the protective effect of the ELOVL2/DHA axis during glucolipotoxicity. Downregulation of CPT1 also counteracted the anti-apoptotic action of the ELOVL2/DHA axis. By contrast, a mutated active form of Cpt1 inhibited glucolipotoxicity-induced beta cell apoptosis when ELOVL2 was downregulated. CONCLUSIONS/INTERPRETATION: Our results identify ELOVL2 as a critical pro-survival enzyme for preventing beta cell death and dysfunction induced by glucolipotoxicity, notably by favouring palmitate oxidation in mitochondria through a CPT1-dependent mechanism.


Assuntos
Acetiltransferases/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Animais , Apoptose/fisiologia , Elongases de Ácidos Graxos , Glucose/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Oxirredução , Palmitatos/metabolismo
4.
Diabetes ; 67(7): 1258-1271, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29759974

RESUMO

One main mechanism of insulin resistance (IR), a key feature of type 2 diabetes, is the accumulation of saturated fatty acids (FAs) in the muscles of obese patients with type 2 diabetes. Understanding the mechanism that underlies lipid-induced IR is an important challenge. Saturated FAs are metabolized into lipid derivatives called ceramides, and their accumulation plays a central role in the development of muscle IR. Ceramides are produced in the endoplasmic reticulum (ER) and transported to the Golgi apparatus through a transporter called CERT, where they are converted into various sphingolipid species. We show that CERT protein expression is reduced in all IR models studied because of a caspase-dependent cleavage. Inhibiting CERT activity in vitro potentiates the deleterious action of lipotoxicity on insulin signaling, whereas overexpression of CERT in vitro or in vivo decreases muscle ceramide content and improves insulin signaling. In addition, inhibition of caspase activity prevents ceramide-induced insulin signaling defects in C2C12 muscle cells. Altogether, these results demonstrate the importance of physiological ER-to-Golgi ceramide traffic to preserve muscle cell insulin signaling and identify CERT as a major actor in this process.


Assuntos
Ácidos Graxos/toxicidade , Resistência à Insulina/genética , Insulina/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Adulto , Animais , Células Cultivadas , Ceramidas/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Mol Metab ; 8: 23-36, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233519

RESUMO

OBJECTIVES: Hypothalamic lipotoxicity has been shown to induce central insulin resistance and dysregulation of glucose homeostasis; nevertheless, elucidation of the regulatory mechanisms remains incomplete. Here, we aimed to determine the role of de novo ceramide synthesis in hypothalamus on the onset of central insulin resistance and the dysregulation of glucose homeostasis induced by obesity. METHODS: Hypothalamic GT1-7 neuronal cells were treated with palmitate. De novo ceramide synthesis was inhibited either by pharmacological (myriocin) or molecular (si-Serine Palmitoyl Transferase 2, siSPT2) approaches. Obese Zucker rats (OZR) were intracerebroventricularly infused with myriocin to inhibit de novo ceramide synthesis. Insulin resistance was determined by quantification of Akt phosphorylation. Ceramide levels were quantified either by a radioactive kinase assay or by mass spectrometry analysis. Glucose homeostasis were evaluated in myriocin-treated OZR. Basal and glucose-stimulated parasympathetic tonus was recorded in OZR. Insulin secretion from islets and ß-cell mass was also determined. RESULTS: We show that palmitate impaired insulin signaling and increased ceramide levels in hypothalamic neuronal GT1-7 cells. In addition, the use of deuterated palmitic acid demonstrated that palmitate activated several enzymes of the de novo ceramide synthesis pathway in hypothalamic cells. Importantly, myriocin and siSPT2 treatment restored insulin signaling in palmitate-treated GT1-7 cells. Protein kinase C (PKC) inhibitor or a dominant-negative PKCζ also counteracted palmitate-induced insulin resistance. Interestingly, attenuating the increase in levels of hypothalamic ceramides with intracerebroventricular infusion of myriocin in OZR improved their hypothalamic insulin-sensitivity. Importantly, central myriocin treatment partially restored glucose tolerance in OZR. This latter effect is related to the restoration of glucose-stimulated insulin secretion and an increase in ß-cell mass of OZR. Electrophysiological recordings also showed an improvement of glucose-stimulated parasympathetic nerve activity in OZR centrally treated with myriocin. CONCLUSION: Our results highlight a key role of hypothalamic de novo ceramide synthesis in central insulin resistance installation and glucose homeostasis dysregulation associated with obesity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Animais , Glicemia/metabolismo , Linhagem Celular , Células Cultivadas , Ceramidas/biossíntese , Secreção de Insulina , Camundongos , Ratos , Ratos Zucker
6.
Front Physiol ; 8: 787, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29075199

RESUMO

The regulation of energy balance by the central nervous system (CNS) is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D). Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate), the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA) to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.

7.
Diabetologia ; 59(12): 2645-2653, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27631137

RESUMO

AIMS/HYPOTHESIS: Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. METHODS: Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc -/- mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. RESULTS: Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. CONCLUSIONS: Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.


Assuntos
Glucose/metabolismo , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoglicerídeos/metabolismo , Gordura Subcutânea/metabolismo
8.
Expert Opin Ther Targets ; 19(8): 1037-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814122

RESUMO

INTRODUCTION: Obesity is a major factor that is linked to the development of type 2 diabetes (T2D). Excess circulating fatty acids (FAs), which characterize obesity, induce insulin resistance, steatosis, ß cells dysfunction and apoptosis. These deleterious effects have been defined as lipotoxicity. AREAS COVERED: FAs are metabolized to different lipid species, including ceramides which play a crucial role in lipotoxicity. The action of ceramides on tissues, such as muscle, liver, adipose tissue and pancreatic ß cells, during the development of T2D will also be reviewed. In addition, the potential antagonist action of other sphingolipids, namely sphingoid base phosphates, on lipotoxicity in skeletal muscle and ß cells will be addressed. EXPERT OPINION: Ceramide is a critical mediator to the development of T2D linked to obesity. Targeting proteins involved in ceramide's deleterious action has not been possible due to their involvement in many other intracellular signaling pathways. A possible means of counteracting ceramide action would be to prevent the accumulation of the specific ceramide species involved in both insulin resistance and ß-cell apoptosis/dysfunction. Another possibility would be to adjust the dynamic balance between ceramide and sphingoid base phosphate, both known to display opposing properties on the development of T2D-linked obesity.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Obesidade/terapia , Esfingolipídeos/metabolismo , Animais , Apoptose/fisiologia , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Ácidos Graxos/metabolismo , Humanos , Resistência à Insulina/fisiologia , Obesidade/complicações , Obesidade/fisiopatologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA