Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 253: 123937, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179557

RESUMO

Glyphosate is the most widely used herbicide in the world and, in view of its toxicity, there is a quest for easy-to-use, but reliable methods to detect it in water. To address this issue, we realized a simple, rapid, and highly sensitive immunosensor based on gold coated magnetic nanoparticles (MNPs@Au) to detect glyphosate in tap water. Not only the gold shell provided a sensitive optical transduction of the biological signal - through the shift of the local surface plasmon resonance (LSPR) entailed by the nanoparticle aggregation -, but it also allowed us to use an effective photochemical immobilization technique to tether oriented antibodies straight on the nanoparticles surface. While such a feature led to aggregates in which the nanoparticles were at close proximity each other, the magnetic properties of the core offered us an efficient tool to steer the nanoparticles by a rotating magnetic field. As a result, the nanoparticle aggregation in presence of the target could take place at higher rate (enhanced diffusion) with significant improvement in sensitivity. As a matter of fact, the combination of plasmonic and magnetic properties within the same nanoparticles allowed us to realize a colorimetric biosensor with a limit of detection (LOD) of 20 ng∙L-1.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Água , Ouro , Fenômenos Magnéticos
2.
ACS Omega ; 7(41): 36543-36550, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36278054

RESUMO

Magnetoresistive (MR) biosensors combine distinctive features such as small size, low cost, good sensitivity, and propensity to be arrayed to perform multiplexed analysis. Magnetic nanoparticles (MNPs) are the ideal target for this platform, especially if modified not only to overcome their intrinsic tendency to aggregate and lack of stability but also to realize an interacting surface suitable for biofunctionalization without strongly losing their magnetic response. Here, we describe an MR biosensor in which commercial MNP clusters were coated with gold nanoparticles (AuNPs) and used to detect human IgG in water using an MR biochip that comprises six sensing regions, each one containing five U-shaped spin valve sensors. The isolated AuNPs (satellites) were stuck onto an aggregate of individual iron oxide crystals (core) so that the resulting core@satellite magnetic particles (CSMPs) could be functionalized by the photochemical immobilization technique-an easy procedure that leads to oriented antibodies immobilized upright onto gold. The morphological, optical, hydrodynamic, magnetic, and surface charge properties of CSMPs were compared with those exhibited by the commercial MNP clusters showing that the proposed coating procedure endows the MNP clusters with stability and ductility without being detrimental to magnetic properties. Eventually, the high-performance MR biosensor allowed us to detect human IgG in water with a detection limit of 13 pM (2 ng mL-1). Given its portability, the biosensor described in this paper lends itself to a point-of-care device; moreover, the features of the MR biochip also make it suitable for multiplexed analysis.

3.
Cell Rep ; 38(13): 110601, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354035

RESUMO

The mammalian genome has a complex, functional 3D organization. However, it remains largely unknown how DNA contacts are orchestrated by chromatin organizers. Here, we infer from only Hi-C the cell-type-specific arrangement of DNA binding sites sufficient to recapitulate, through polymer physics, contact patterns genome wide. Our model is validated by its predictions in a set of duplications at Sox9 against available independent data. The binding site types fall in classes that well match chromatin states from segmentation studies, yet they have an overlapping, combinatorial organization along chromosomes necessary to accurately explain contact specificity. The chromatin signatures of the binding site types return a code linking chromatin states to 3D architecture. The code is validated by extensive de novo predictions of Hi-C maps in an independent set of chromosomes. Overall, our results shed light on how 3D information is encrypted in 1D chromatin via the specific combinatorial arrangement of binding sites.


Assuntos
Cromatina , Polímeros , Animais , Cromossomos , Genoma , Mamíferos/genética , Física
4.
Mikrochim Acta ; 188(3): 88, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594523

RESUMO

A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , L-Lactato Desidrogenase/sangue , Nanopartículas Metálicas/química , Proteínas de Protozoários/sangue , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Imunoensaio/métodos , L-Lactato Desidrogenase/imunologia , Limite de Detecção , Malária/diagnóstico por imagem , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/imunologia
5.
ACS Sens ; 5(10): 3043-3048, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32989986

RESUMO

Mass testing is fundamental to face the pandemic caused by the coronavirus SARS-CoV-2 discovered at the end of 2019. To this aim, it is necessary to establish reliable, fast, and cheap tools to detect viral particles in biological material so to identify the people capable of spreading the infection. We demonstrate that a colorimetric biosensor based on gold nanoparticle (AuNP) interaction induced by SARS-CoV-2 lends itself as an outstanding tool for detecting viral particles in nasal and throat swabs. The extinction spectrum of a colloidal solution of multiple viral-target gold nanoparticles-AuNPs functionalized with antibodies targeting three surface proteins of SARS-CoV-2 (spike, envelope, and membrane)-is red-shifted in few minutes when mixed with a solution containing the viral particle. The optical density of the mixed solution measured at 560 nm was compared to the threshold cycle (Ct) of a real-time PCR (gold standard for detecting the presence of viruses) finding that the colorimetric method is able to detect very low viral load with a detection limit approaching that of the real-time PCR. Since the method is sensitive to the infecting viral particle rather than to its RNA, the achievements reported here open a new perspective not only in the context of the current and possible future pandemics, but also in microbiology, as the biosensor proves itself to be a powerful though simple tool for measuring the viral particle concentration.


Assuntos
Betacoronavirus/química , Colorimetria/métodos , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Mucosa Nasal/virologia , Faringe/virologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , Técnicas Biossensoriais , COVID-19 , Ouro , Humanos , Proteínas de Membrana/química , Nanopartículas Metálicas , Pandemias , Fotoquímica , Reação em Cadeia da Polimerase , SARS-CoV-2 , Manejo de Espécimes , Glicoproteína da Espícula de Coronavírus/química , Níveis Máximos Permitidos , Proteínas do Envelope Viral/química
6.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759707

RESUMO

A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 µg∙mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 µm ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.

7.
Cell Rep ; 28(6): 1574-1583.e4, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390570

RESUMO

Complex architectural rearrangements are associated to the control of the HoxD genes in different cell types; yet, how they are implemented in single cells remains unknown. By use of polymer models, we dissect the locus 3D structure at the single DNA molecule level in mouse embryonic stem and cortical neuronal cells, as the HoxD cluster changes from a poised to a silent state. Our model describes published Hi-C, 3-way 4C, and FISH data with high accuracy and is validated against independent 4C data on the Nsi-SB 0.5-Mb duplication and on triple contacts. It reveals the mode of action of compartmentalization on the regulation of the HoxD genes that have gene- and cell-type-specific multi-way interactions with their regulatory elements and high cell-to-cell variability. It shows that TADs and higher-order 3D structures, such as metaTADs, associate with distinct combinations of epigenetic factors, including but not limited to CCCTC-binding factor (CTCF) and histone marks.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurônios/metabolismo , Animais , Camundongos , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA