Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Radiat Oncol ; 3(3): 447-457, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202812

RESUMO

PURPOSE: Few definitive treatment options exist for elderly patients diagnosed with early stage breast cancer who are medically inoperable or refuse surgery. Historical data suggest very poor local control with hormone therapy alone. We examined the dosimetric feasibility of hypofractionated radiation therapy using stereotactic ablative radiotherapy (SABR) and proton beam therapy (PBT) as a means of definitive treatment for early stage breast cancer. METHODS AND MATERIALS: Fifteen patients with biopsy-proven early stage breast cancer with a clinically visible tumor on preoperative computed tomography scans were identified. Gross tumor volumes were contoured and correlated with known biopsy-proven malignancy on prior imaging. Treatment margins were created on the basis of set-up uncertainty and image guidance capabilities of the three radiation modalities analyzed (3-dimensional conformal radiation therapy [3D-CRT], SABR, and PBT) to deliver a total dose of 50 Gy in 5 fractions. Dose volume histograms were analyzed and compared between treatment techniques. RESULTS: The median planning target volume (PTV) for SABR, PBT, and 3-dimensional CRT was 11.91, 21.03, and 45.08 cm3, respectively, and were significantly different (P < .0001) between treatment modalities. Overall target coverage of gross tumor and clinical target volumes was excellent with all three modalities. Both SABR and PBT demonstrated significant dosimetric improvements, each in its own unique manner, relative to 3D-CRT. Dose constraints to normal structures including ipsilateral/contralateral breast, bilateral lungs, and heart were all consistently achieved using SABR and PBT. However, skin or chest wall dose constraints were exceeded in some cases for both SABR and PBT plans and was dictated by the anatomic location of the tumor. CONCLUSIONS: Definitive hypofractionated radiation therapy using SABR and PBT appears to be dosimetrically feasible for the treatment of early stage breast cancer. The anatomical location of the tumor relative to the skin and chest wall appears to be the primary limiting dosimetric factor.

2.
Front Oncol ; 6: 129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242967

RESUMO

PURPOSE: The efficacy of accelerated partial breast irradiation (APBI) utilizing brachytherapy or conventional external beam radiation has been studied in early-stage breast cancer treated with breast-conserving surgery. Data regarding stereotactic treatment approaches are emerging. The CyberKnife linear accelerator enables excellent dose conformality to target structures while adjusting for target and patient motion. We report our institutional experience on the technical feasibility and rationale for stereotactic accelerated partial breast irradiation (SAPBI) delivery using the CyberKnife radiosurgery system. METHODS: Ten patients completed CyberKnife SAPBI (CK-SAPBI) in 2013 at Georgetown University Hospital. Four gold fiducials were implanted around the lumpectomy cavity prior to treatment under ultrasound guidance. The synchrony system tracked intrafraction motion of the fiducials. The clinical target volume was defined on contrast enhanced CT scans using surgical clips and post-operative changes. A 5 mm expansion was added to create the planning treatment volume (PTV). A total dose of 30 Gy was delivered to the PTV in five consecutive fractions. Target and critical structure doses were assessed as per the National Surgical Adjuvant Breast and Bowel Project B-39 study. RESULTS: At least three fiducials were tracked in 100% of cases. The Mean treated PTV was 70 cm(3) and the mean prescription isodose line was 80%. Mean dose to target volumes and constraints are as follows: 100% of the PTV received the prescription dose (PTV30). The volume of the ipsilateral breast receiving 30 Gy (V30) and above 15 Gy (V > 15) was 14 and 31%, respectively. The ipsilateral lung volume receiving 9 Gy (V9) was 3%, and the contralateral lung volume receiving 1.5 Gy (V1.5) was 8%. For left-sided breast cancers, the volume of heart receiving 1.5 Gy (V1.5) was 31%. Maximum skin dose was 36 Gy. At a median follow-up of 1.3 years, all patients have experienced excellent/good breast cosmesis outcomes, and no breast events have been recorded. CONCLUSION: CyberKnife stereotactic accelerated partial breast irradiation is an appealing technique for partial breast irradiation offering improvements over existing APBI techniques. Our early findings indicate that CK-SAPBI delivered in five daily fractions is feasible, well tolerated, and is a reliable platform for delivering APBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA