Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 102(8): 3237-3249, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34796978

RESUMO

BACKGROUND: Willow trees represent a suitable species for the development of agroforestry systems, integrating bioenergy and animal feed production. However, there is a lack of information regarding the suitability of leaves and stems, considered a bioenergy by-product, as animal feed. The aim of this study was the employment of attenuated total reflectance Fourier transform infrared spectroscopy (550-4000 cm-1 ) to investigate differences in the nutrient molecular structure profile of leaves and stems of selected willow cultivars to understand their utility for ruminant nutrition. RESULTS: Univariate analysis of variance of leaves showed lower intensities of cellulosic compounds and higher of protein in comparison with stems, which suggests higher leaf dry matter and protein digestibility. Spectral analyses revealed differences in both plant parts between Salix cv. Terra Nova and Salix cv. Beagle, cv. Resolution, and cv. Olof. The higher α-helix to ß-sheet ratio, which is related to a higher protein digestibility, was in correlation with the lower content of condensed tannins. Principal component and agglomerative hierarchical cluster analyses showed significant discrimination among willow cultivars in the cellulosic, structural carbohydrate, and amide regions, whereas differences were less evident for total carbohydrate and lipid-related regions. CONCLUSION: The application of attenuated total reflectance Fourier transform infrared molecular spectroscopy is an effective tool to rapidly identify spectral features related to the nutritional composition of willow foliage and to discriminate between cultivars and parts of the plant. This information would be useful to optimize the use of willow fodders in agroforestry systems. © 2021 Society of Chemical Industry.


Assuntos
Salix , Ração Animal/análise , Animais , Carboidratos da Dieta/análise , Folhas de Planta/química , Ruminantes , Salix/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
2.
Animals (Basel) ; 10(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238648

RESUMO

Phlorotannins have been reported to have positive effects on pig health, including improved gut health and digestibility. In this study, we investigate the effect of phenolics found in two brown seaweeds, Ascophyllum nodosum and Fucus serratus, on in vitro dry matter digestibility of seaweeds and commercial pig feed. Phlorotannin extracts and whole seaweeds were supplemented into pig feed to test their effect on digestibility. Solid-phase extraction was used to purify the phenolics to phlorotannins. The results showed a slight decrease in the digestibility of pig feed that was found to be significant when phlorotannin extracts were added from either seaweed. However, when whole A. nodosum was added to the pig feed, the effect on digestibility was less pronounced. Specifically, no significant difference in digestibility was observed at inclusion rates up to 5%, and thereafter results varied. A difference in digestibility was also observed in the same species at the same inclusion rate, collected from different seasons. This suggests that other compounds, e.g., polysaccharides, are having an effect on digestibility when whole seaweeds are supplemented to animal feed. This research has also highlighted the need to base supplementation on phenolic concentration as opposed to a standardised percentage inclusion of seaweeds to ensure that digestibility is not adversely affected.

3.
Animals (Basel) ; 10(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545350

RESUMO

Ensiling could be an effective method to preserve seaweeds for animal feed applications, however, there is limited scientific knowledge in this area. Seaweeds are a promising ruminant feed ingredient, in part due to the content of phenolic compounds, which are receiving considerable interest as alternative antimicrobial agents in feed. The aim of the study was to compare the effect of ensiling on the nutritional composition and fermentation characteristics of two brown seaweed species, Fucus vesiculosus (FV) and Saccharina latissimi (SL) with or without the use of a Lactobacillus plantarum (LAB) inoculant. The effect of ensiling on the stability of phlorotannin was also investigated using nuclear magnetic resonance (NMR). After harvesting, the seaweeds were wilted for 24 h and subsequently ensiled in laboratory-scaled silos for 90 days. SL silage showed a stronger fermentation pattern (pH < 4), dominated by lactic acid (50-60 g/kg Dry Matter (DM)), and a slightly higher acetic acid content compared to FV silages (p < 0.05). The fermentability of FV was limited (pH > 4.8) with low lactic acid production (<5 g/kg DM). The addition of the LAB inoculant showed no effect on the fermentation process but a modest effect on the chemical composition of both species was observed after the 90-day ensiling period. The results showed no losses in the nutrient content of FV after ensiling, however losses in the Crude Protein (CP, -32%), ash (-36%), Neutral Detergent Fibre (NDF, -77%) and Acid Detergent Fibre (ADF, -58%) content of SL were observed. The ensiling process had a limited effect on the in vitro true dry matter digestibility and phenolic content of either species. Therefore, ensilage may be a suitable preservation method for the use of brown seaweeds as a ruminant feed; however, species-specific differences were observed.

4.
Animals (Basel) ; 10(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295154

RESUMO

Black soldier fly larvae (BSFL) are gaining importance in animal feeding due to their ability to upcycle low-value agroindustry by-products into high-protein biomass. The present study evaluated the nutritional composition of BSFL reared on brewer's by-product (BBP) and the impact of thermal (90 °C for 10/15 min) and high-pressure processing (HPP; 400/600MPa for 1.5/10 min) treatments on the microbial levels and in vitro digestibility in both ruminant and monogastric models. BBP-reared BSFL contained a high level of protein, amino acids, lauric acid, and calcium, and high counts of total viable counts (TVC; 7.97), Enterobacteriaceae (7.65), lactic acid bacteria (LAB; 6.50), and yeasts and moulds (YM; 5.07). Thermal processing was more effective (p < 0.05) than any of the HPP treatments in reducing TVC. Both temperature of 90 °C and pressure of 600 MPa reduced the levels of Enterobacteriaceae, LAB, and YM below the detection limit. In contrast, the application of the 400 MPa showed a reduced inactivation (p < 0.05) potential. Heat-treated samples did not result in any significant changes (p > 0.05) on any of the in vitro digestibility models, whereas HPP showed increased and decreased ruminal and monogastric digestibility, respectively. HPP did not seem to be a suitable, cost-effective method as an alternative to heat-processing for the large-scale treatment of BSFL.

5.
Foodborne Pathog Dis ; 16(2): 119-129, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277811

RESUMO

Ruminants are important reservoirs of E. coli O157:H7 and are considered as the major source of most foodborne outbreaks (e.g., 2017 outbreak in Germany, 2014 and 2016 outbreaks in United States, all linked to beef products). A promising strategy to reduce E. coli O157 is using antimicrobials to reduce the pathogen levels and/or virulence within the animal gastrointestinal tract and thus foodborne disease. The aim of the study was to determine the efficacy of a commercial mixture of natural antimicrobials against E. coli O157. The minimum inhibitory concentration and minimum bactericidal concentration of the antimicrobial were quantitatively determined and found to be 0.5% and 0.75% (v/v) of the natural antimicrobial, respectively. Microbial growth kinetics was also used to determine the effect of the antimicrobial on the pathogen. The natural antimicrobial affected the cell membrane of E. coli O157, as demonstrated by the increase in relative electric conductivity and increase in protein and nucleic acid release. The antimicrobial was also able to significantly reduce the concentration on E. coli O157 in a model rumen system. Biofilm assays showed that subinhibitory concentrations of the antimicrobial significantly reduced the E. coli 0157 biofilm forming capacity without influencing pathogen growth. In addition, the natural antimicrobial was able to reduce motility and exopolysaccharide production. Subinhibitory concentrations of the antimicrobial had no effect on AI-2 production. These findings suggest that the natural antimicrobial exerts an antimicrobial effect against E. coli O157 in vitro and in a model rumen system and could be potentially used to control this pathogen in the animal gut. The results also indicate that subinhibitory concentrations of the antimicrobial effectively reduce biofilm formation, motility, and exopolysaccharide production.


Assuntos
Anti-Infecciosos/farmacologia , Produtos Biológicos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Bovinos , Permeabilidade da Membrana Celular , Condutividade Elétrica , Escherichia coli O157/crescimento & desenvolvimento , Escherichia coli O157/fisiologia , Feminino , Homosserina/análogos & derivados , Homosserina/efeitos dos fármacos , Humanos , Lactonas , Testes de Sensibilidade Microbiana , Polissacarídeos Bacterianos/metabolismo , Rúmen/efeitos dos fármacos , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA