Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(6): 1260-1273.e7, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38744292

RESUMO

Upon parasitic helminth infection, activated intestinal tuft cells secrete interleukin-25 (IL-25), which initiates a type 2 immune response during which lamina propria type 2 innate lymphoid cells (ILC2s) produce IL-13. This causes epithelial remodeling, including tuft cell hyperplasia, the function of which is unknown. We identified a cholinergic effector function of tuft cells, which are the only epithelial cells that expressed choline acetyltransferase (ChAT). During parasite infection, mice with epithelial-specific deletion of ChAT had increased worm burden, fitness, and fecal egg counts, even though type 2 immune responses were comparable. Mechanistically, IL-13-amplified tuft cells release acetylcholine (ACh) into the gut lumen. Finally, we demonstrated a direct effect of ACh on worms, which reduced their fecundity via helminth-expressed muscarinic ACh receptors. Thus, tuft cells are sentinels in naive mice, and their amplification upon helminth infection provides an additional type 2 immune response effector function.


Assuntos
Acetilcolina , Mucosa Intestinal , Animais , Acetilcolina/metabolismo , Camundongos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/parasitologia , Colina O-Acetiltransferase/metabolismo , Interleucina-13/metabolismo , Interleucina-13/imunologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Helmintíase/imunologia , Helmintíase/parasitologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Imunidade Inata , Nematospiroides dubius/imunologia , Células em Tufo
2.
Cells ; 12(20)2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887321

RESUMO

Tuft cells have recently emerged as the focus of intense interest following the discovery of their chemosensory role in the intestinal tract, and their ability to activate Type 2 immune responses to helminth parasites. Moreover, they populate a wide range of mucosal tissues and are intimately connected to immune and neuronal cells, either directly or through the release of pharmacologically active mediators. They are now recognised to fulfil both homeostatic roles, in metabolism and tissue integrity, as well as acting as the first sensors of parasite infection, immunity to which is lost in their absence. In this review we focus primarily on the importance of tuft cells in the intestinal niche, but also link to their more generalised physiological role and discuss their potential as targets for the treatment of gastrointestinal disorders.


Assuntos
Helmintos , Parasitos , Doenças Parasitárias , Animais , Mucosa Intestinal/metabolismo , Doenças Parasitárias/metabolismo , Imunidade
3.
STAR Protoc ; 4(4): 102608, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37751353

RESUMO

Parasitic helminth worms frequently infect the gastrointestinal tract and interact with the intestinal epithelium and specialized cell types within it. Intestinal organoids derived from stem cells that line the intestine represent a transformational technology in the study of epithelial-parasite dialogue. Here, we present a protocol for establishing small intestine organoid cultures and administering parasite products of interest to these cultures. We then describe steps for evaluating their impact by microscopy, flow cytometry, immunohistology, and mRNA gene expression. For complete details on the use and execution of this protocol, please refer to Drurey et al. (2022).1.


Assuntos
Intestino Delgado , Intestinos , Camundongos , Animais , Mucosa Intestinal , Organoides , Trato Gastrointestinal
4.
Discov Immunol ; 2(1): kyad001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855464

RESUMO

In animal models of inflammatory colitis, pathology can be ameliorated by several intestinal helminth parasites, including the mouse nematode Heligmosomoides polygyrus. To identify parasite products that may exert anti-inflammatory effects in vivo, we tested H. polygyrus excretory-secretory (HES) products, as well as a recombinantly expressed parasite protein, transforming growth factor mimic (TGM), that functionally mimics the mammalian immunomodulatory cytokine TGF-ß. HES and TGM showed a degree of protection in dextran sodium sulphate-induced colitis, with a reduction in inflammatory cytokines, but did not fully block the development of pathology. HES also showed little benefit in a similar acute trinitrobenzene sulphonic acid-induced model. However, in a T cell transfer-mediated model with recombination activation gene (RAG)-deficient mice, HES-reduced disease scores if administered throughout the first 2 or 4 weeks following transfer but was less effective if treatment was delayed until 14 days after T cell transfer. Recombinant TGM similarly dampened colitis in RAG-deficient recipients of effector T cells, and was effective even if introduced only once symptoms had begun to be manifest. These results are a promising indication that TGM may replicate, and even surpass, the modulatory properties of native parasite HES.

5.
Sci Immunol ; 7(71): eabl6543, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35559665

RESUMO

The intestinal tract is a common site for various types of infections including viruses, bacteria, and helminths, each requiring specific modes of immune defense. The intestinal epithelium has a pivotal role in both immune initiation and effector stages, which are coordinated by lymphocyte cytokines such as IFNγ, IL-13, and IL-22. Here, we studied intestinal epithelial immune responses using organoid image analysis based on a convolutional neural network, transcriptomic analysis, and in vivo infection models. We found that IL-13 and IL-22 both induce genes associated with goblet cells, but the resulting goblet cell phenotypes are dichotomous. Moreover, only IL-13-driven goblet cells are associated with classical NOTCH signaling. We further showed that IL-13 induces the bone morphogenetic protein (BMP) pathway, which acts in a negative feedback loop on immune type 2-driven tuft cell hyperplasia. This is associated with inhibiting Sox4 expression to putatively limit the tuft cell progenitor population. Blocking ALK2, a BMP receptor, with the inhibitor dorsomorphin homolog 1 (DMH1) interrupted the feedback loop, resulting in greater tuft cell numbers both in vitro and in vivo after infection with Nippostrongylus brasiliensis. Together, this investigation of cytokine effector responses revealed an unexpected and critical role for the BMP pathway in regulating type 2 immunity, which can be exploited to tailor epithelial immune responses.


Assuntos
Proteínas Morfogenéticas Ósseas , Hiperplasia , Interleucina-13 , Mucosa Intestinal , Proteínas Morfogenéticas Ósseas/metabolismo , Retroalimentação , Humanos , Hiperplasia/imunologia , Interleucina-13/imunologia , Fatores de Transcrição SOXC/metabolismo , Infecções por Strongylida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA