Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(2): e0262824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35108301

RESUMO

The Wapiti Formation of northwest Alberta and northeast British Columbia, Canada, preserves an Upper Cretaceous terrestrial vertebrate fauna that is latitudinally situated between those documented further north in Alaska and those from southern Alberta and the contiguous U.S.A. Therefore, the Wapiti Formation is important for identifying broad patterns in vertebrate ecology, diversity, and distribution across Laramidia during the latest Cretaceous. Tracksites are especially useful as they provide a range of palaeoecological, palaeoenvironmental, and behavioural data that are complementary to the skeletal record. Here, we describe the Tyrants Aisle locality, the largest in-situ tracksite known from the Wapiti Formation. The site occurs in the lower part of Unit 4 of the formation (~72.5 Ma, upper Campanian), exposed along the southern bank of the Redwillow River. More than 100 tracks are documented across at least three distinct track-bearing layers, which were deposited on an alluvial floodplain. Hadrosaurid tracks are most abundant, and are referable to Hadrosauropodus based on track width exceeding track length, broad digits, and rounded or bilobed heel margins. We suggest the hadrosaurid trackmaker was Edmontosaurus regalis based on stratigraphic context. Tyrannosaurids, probable troodontids, possible ornithomimids, and possible azhdarchid pterosaurs represent minor but notable elements of the ichnofauna, as the latter is unknown from skeletal remains within the Wapiti Formation, and all others are poorly represented. Possible social behaviour is inferred for some of the hadrosaurid and small theropod-like trackmakers based on trackway alignment, suitable spacing and consistent preservation. On a broad taxonomic level (i.e., family or above), ichnofaunal compositions indicate that hadrosaurids were palaeoecologically dominant across Laramidia during the late Campanian within both high-and low-latitude deposits, although the role of depositional environment requires further testing.


Assuntos
Dinossauros/fisiologia , Fósseis , Alberta , Animais , Dinossauros/anatomia & histologia
2.
Science ; 375(6578): eabj5976, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050649

RESUMO

Schroeder et al. (Reports, 26 February 2021, p. 941) reported a size gap among predatory dinosaur species. We argue that the supporting dataset is skewed toward Late Cretaceous North America and that the gap was likely absent during other intervals in most geographic regions. We urge broader consideration of this hypothesis, with quantitative evaluation of preservational and dataset biases.


Assuntos
Dinossauros , Animais , América do Norte , Comportamento Predatório
3.
Curr Biol ; 31(23): 5138-5148.e4, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34614390

RESUMO

Sharks are iconic predators in today's oceans, yet their modern diversity has ancient origins. In particular, present hypotheses suggest that a combination of mass extinction, global climate change, and competition has regulated the community structure of dominant mackerel (Lamniformes) and ground (Carcharhiniformes) sharks over the last 66 million years. However, while these scenarios advocate an interplay of major abiotic and biotic events, the precise drivers remain obscure. Here, we focus on the role of feeding ecology using a geometric morphometric analysis of 3,837 fossil and extant shark teeth. Our results reveal that morphological segregation rather than competition has characterized lamniform and carcharhiniform evolution. Moreover, although lamniforms suffered a long-term disparity decline potentially linked to dietary "specialization," their recent disparity rivals that of "generalist" carcharhiniforms. We further confirm that low eustatic sea levels impacted lamniform disparity across the end-Cretaceous mass extinction. Adaptations to changing prey availability and the proliferation of coral reef habitats during the Paleogene also likely facilitated carcharhiniform dispersals and cladogenesis, underpinning their current taxonomic dominance. Ultimately, we posit that trophic partitioning and resource utilization shaped past shark ecology and represent critical determinants for their future species survivorship.


Assuntos
Tubarões , Animais , Ecologia , Ecossistema , Extinção Biológica , Fósseis , Tubarões/anatomia & histologia
4.
PLoS Biol ; 19(8): e3001108, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34375335

RESUMO

Sharks (Selachimorpha) are iconic marine predators that have survived multiple mass extinctions over geologic time. Their prolific fossil record is represented mainly by isolated shed teeth, which provide the basis for reconstructing deep time diversity changes affecting different selachimorph clades. By contrast, corresponding shifts in shark ecology, as measured through morphological disparity, have received comparatively limited analytical attention. Here, we use a geometric morphometric approach to comprehensively examine tooth morphologies in multiple shark lineages traversing the catastrophic end-Cretaceous mass extinction-this event terminated the Mesozoic Era 66 million years ago. Our results show that selachimorphs maintained virtually static levels of dental disparity in most of their constituent clades across the Cretaceous-Paleogene interval. Nevertheless, selective extinctions did impact apex predator species characterized by triangular blade-like teeth. This is particularly evident among lamniforms, which included the dominant Cretaceous anacoracids. Conversely, other groups, such as carcharhiniforms and orectolobiforms, experienced disparity modifications, while heterodontiforms, hexanchiforms, squaliforms, squatiniforms, and †synechodontiforms were not overtly affected. Finally, while some lamniform lineages disappeared, others underwent postextinction disparity increases, especially odontaspidids, which are typified by narrow-cusped teeth adapted for feeding on fishes. Notably, this increase coincides with the early Paleogene radiation of teleosts as a possible prey source, and the geographic relocation of disparity sampling "hotspots," perhaps indicating a regionally disjunct extinction recovery. Ultimately, our study reveals a complex morphological response to the end-Cretaceous mass extinction and highlights an event that influenced the evolution of modern sharks.


Assuntos
Evolução Biológica , Extinção Biológica , Fósseis/anatomia & histologia , Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Ecossistema
5.
PeerJ ; 9: e11290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987001

RESUMO

Hadrosaurid (duck-billed) dinosaur bonebeds are exceedingly prevalent in upper Cretaceous (Campanian-Maastrichtian) strata from the Midwest of North America (especially Alberta, Canada, and Montana, U.S.A) but are less frequently documented from more northern regions. The Wapiti Formation (Campanian-Maastrichtian) of northwestern Alberta is a largely untapped resource of terrestrial palaeontological information missing from southern Alberta due to the deposition of the marine Bearpaw Formation. In 2018, the Boreal Alberta Dinosaur Project rediscovered the Spring Creek Bonebed, which had been lost since 2002, along the northern bank of the Wapiti River, southwest of Grande Prairie. Earlier excavations and observations of the Spring Creek Bonebed suggested that the site yielded young hadrosaurines. Continued work in 2018 and 2019 recovered ~300 specimens that included a minimum of eight individuals, based on the number of right humeri. The morphology of several recovered cranial elements unequivocally supports lambeosaurine affinities, making the Spring Creek sample the first documented occurrence of lambeosaurines in the Wapiti Formation. The overall size range and histology of the bones found at the site indicate that these animals were uniformly late juveniles, suggesting that age segregation was a life history strategy among hadrosaurids. Given the considerable size attained by the Spring Creek lambeosaurines, they were probably segregated from the breeding population during nesting or caring for young, rather than due to different diet and locomotory requirements. Dynamic aspects of life history, such as age segregation, may well have contributed to the highly diverse and cosmopolitan nature of Late Cretaceous hadrosaurids.

6.
PeerJ ; 9: e10545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33552712

RESUMO

Classifying isolated vertebrate bones to a high level of taxonomic precision can be difficult. Many of Australia's Cretaceous terrestrial vertebrate fossil-bearing deposits, for example, produce large numbers of isolated bones and very few associated or articulated skeletons. Identifying these often fragmentary remains beyond high-level taxonomic ranks, such as Ornithopoda or Theropoda, is difficult and those classified to lower taxonomic levels are often debated. The ever-increasing accessibility to 3D-based comparative techniques has allowed palaeontologists to undertake a variety of shape analyses, such as geometric morphometrics, that although powerful and often ideal, require the recognition of diagnostic landmarks and the generation of sufficiently large data sets to detect clusters and accurately describe major components of morphological variation. As a result, such approaches are often outside the scope of basic palaeontological research that aims to simply identify fragmentary specimens. Herein we present a workflow in which pairwise comparisons between fragmentary fossils and better known exemplars are digitally achieved through three-dimensional mapping of their surface profiles and the iterative closest point (ICP) algorithm. To showcase this methodology, we compared a fragmentary theropod ungual (NMV P186153) from Victoria, Australia, identified as a neovenatorid, with the manual unguals of the megaraptoran Australovenator wintonensis (AODF604). We discovered that NMV P186153 was a near identical match to AODF604 manual ungual II-3, differing only in size, which, given their 10-15Ma age difference, suggests stasis in megaraptoran ungual morphology throughout this interval. Although useful, our approach is not free of subjectivity; care must be taken to eliminate the effects of broken and incomplete surfaces and identify the human errors incurred during scaling, such as through replication. Nevertheless, this approach will help to evaluate and identify fragmentary remains, adding a quantitative perspective to an otherwise qualitative endeavour.

7.
Biol Rev Camb Philos Soc ; 95(6): 1759-1797, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32869488

RESUMO

Inferring the body mass of fossil taxa, such as non-avian dinosaurs, provides a powerful tool for interpreting physiological and ecological properties, as well as the ability to study these traits through deep time and within a macroevolutionary context. As a result, over the past 100 years a number of studies advanced methods for estimating mass in dinosaurs and other extinct taxa. These methods can be categorized into two major approaches: volumetric-density (VD) and extant-scaling (ES). The former receives the most attention in non-avian dinosaurs and advanced appreciably over the last century: from initial physical scale models to three-dimensional (3D) virtual techniques that utilize scanned data obtained from entire skeletons. The ES approach is most commonly applied to extinct members of crown clades but some equations are proposed and utilized in non-avian dinosaurs. Because both approaches share a common goal, they are often viewed in opposition to one another. However, current palaeobiological research problems are often approach specific and, therefore, the decision to utilize a VD or ES approach is largely question dependent. In general, biomechanical and physiological studies benefit from the full-body reconstruction provided through a VD approach, whereas large-scale evolutionary and ecological studies require the extensive data sets afforded by an ES approach. This study summarizes both approaches to body mass estimation in stem-group taxa, specifically non-avian dinosaurs, and provides a comparative quantitative framework to reciprocally illuminate and corroborate VD and ES approaches. The results indicate that mass estimates are largely consistent between approaches: 73% of VD reconstructions occur within the expected 95% prediction intervals of the ES relationship. However, almost three quarters of outliers occur below the lower 95% prediction interval, indicating that VD mass estimates are, on average, lower than would be expected given their stylopodial circumferences. Inconsistencies (high residual and per cent prediction deviation values) are recovered to a varying degree among all major dinosaurian clades along with an overall tendency for larger deviations between approaches among small-bodied taxa. Nonetheless, our results indicate a strong corroboration between recent iterations of the VD approach based on 3D specimen scans suggesting that our current understanding of size in dinosaurs, and hence its biological correlates, has improved over time. We advance that VD and ES approaches have fundamentally (metrically) different advantages and, hence, the comparative framework used and advocated here combines the accuracy afforded by ES with the precision provided by VD and permits the rapid identification of discrepancies with the potential to open new areas of discussion.


Assuntos
Dinossauros , Animais , Evolução Biológica , Fósseis
8.
Sci Rep ; 9(1): 19600, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862946

RESUMO

Dinosaurs were remarkably climate-tolerant, thriving from equatorial to polar latitudes. High-paleolatitude eggshells and hatchling material from the Northern Hemisphere confirms that hadrosaurid ornithopods reproduced in polar regions. Similar examples are lacking from Gondwanan landmasses. Here we describe two non-iguanodontian ornithopod femora from the Griman Creek Formation (Cenomanian) in New South Wales, Australia. These incomplete proximal femora represent the first perinatal ornithopods described from Australia, supplementing neonatal and slightly older 'yearling' specimens from the Aptian-Albian Eumeralla and Wonthaggi formations in Victoria. While pseudomorphic preservation obviates histological examination, anatomical and size comparisons with Victorian specimens, which underwent previous histological work, support perinatal interpretations for the Griman Creek Formation femora. Estimated femoral lengths (37 mm and 45 mm) and body masses (113-191 g and 140-236 g), together with the limited development of features in the smallest femur, suggest a possible embryonic state. Low body masses (<1 kg for 'yearlings' and ~20 kg at maturity) would have precluded small ornithopods from long-distance migration, even as adults, in the Griman Creek, Eumeralla, and Wonthaggi formations. Consequently, these specimens support high-latitudinal breeding in a non-iguanodontian ornithopod in eastern Gondwana during the early Late Cretaceous.


Assuntos
Dinossauros/anatomia & histologia , Fêmur , Fósseis , Animais , Clima , Geografia , New South Wales , Filogenia
9.
Naturwissenschaften ; 106(7-8): 38, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209559

RESUMO

Xiphosurida-crown group horseshoe crabs-are a group of morphologically conservative marine chelicerates (at least since the Jurassic). They represent an idealised example of evolutionary stasis. Unfortunately, body fossils of horseshoe crabs seldom preserve appendages and their associated features; thus, an important aspect of their morphology is absent in explorations of their conservative Bauplan. As such, fossil horseshoe crab appendages are rarely considered within a comparative framework: previous comparisons have focussed almost exclusively on extant taxa to the exclusion of extinct taxa. Here, we examine eight specimens of the xiphosurid Tachypleus syriacus (Woodward, 1879) from the Cenomanian (ca 100 Ma) Konservat-Lagerstätten of Lebanon, five of which preserve the cephalothoracic and thoracetronic appendages in exceptional detail. Comparing these appendages of T. syriacus with other fossil xiphosurids highlights the conserved nature of appendage construction across Xiphosurida, including examples of Austrolimulidae, Paleolimulidae, and Limulidae. Conversely, Belinuridae have more elongate cephalothoracic appendages relative to body length. Differences in appendage sizes are likely related to the freshwater and possible subaerial life modes of belinurids, contrasting with the primarily marine habits of other families. The morphological similarity of T. syriacus to extant members of the genus indicates that the conserved nature of the generic lineage can be extended to ecological adaptations, notably burrowing, swimming, possible diet, and sexual dimorphism.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/classificação , Adaptação Fisiológica , Animais , Ecossistema , Extremidades/anatomia & histologia , Filogenia , Especificidade da Espécie
10.
R Soc Open Sci ; 6(2): 181617, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30891280

RESUMO

Living kangaroos, wallabies and rat-kangaroos (Macropodoidea) constitute the most ecologically diverse radiation of Australasian marsupials. Indeed, even their hallmark bipedal hopping gait has been variously modified for bounding, walking and climbing. However, the origins of this locomotory adaptability are uncertain because skeletons of the most ancient macropodoids are exceptionally rare. Some of the stratigraphically oldest fossils have been attributed to Balbaridae-a clade of potentially quadrupedal stem macropodoids that became extinct during the late Miocene. Here we undertake the first assessment of balbarid locomotion using two-dimensional geometric morphometrics and a correlative multivariate analysis of linear measurements. We selected the astragalus and pedal digit IV ungual as proxies for primary gait because these elements are preserved in the only articulated balbarid skeleton, as well as some unusual early Miocene balbarid-like remains that resemble the bones of modern tree-kangaroos. Our results show that these fossils manifest character states indicative of contrasting locomotory capabilities. Furthermore, predictive modelling reveals similarities with extant macropodoids that employ either bipedal saltation and/or climbing. We interpret this as evidence for archetypal gait versatility, which probably integrated higher-speed hopping with slower-speed quadrupedal progression and varying degrees of scansoriality as independent specializations for life in forest and woodland settings.

11.
iScience ; 8: 295-303, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30342972

RESUMO

The fossil record provides empirical patterns of morphological change through time and is central to the study of the tempo and mode of evolution. Here we apply likelihood-based time-series analyses to the near-continuous fossil record of Neogene planktonic foraminifera and reveal a morphological shift along the Truncorotalia lineage. Based on a geometric morphometric dataset of 1,459 specimens, spanning 5.9-4.5 Ma, we recover a shift in the mode of evolution from a disparate latest Miocene morphospace to a highly constrained early Pliocene morphospace. Our recovered dynamics are consistent with those stipulated by Simpson's quantum evolution and Eldredge-Gould's punctuated equilibria and supports previous suppositions that even within a single lineage, evolutionary dynamics require a multi-parameter model framework to describe. We show that foraminiferal lineages are not necessarily gradual and can experience significant and rapid transitions along their evolutionary trajectories and reaffirm the utility of multivariate datasets for their future research.

12.
Curr Biol ; 28(16): 2607-2615.e3, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078565

RESUMO

The Cretaceous-Palaeogene (K-Pg) mass extinction profoundly altered vertebrate ecosystems and prompted the radiation of many extant clades [1, 2]. Sharks (Selachimorpha) were one of the few larger-bodied marine predators that survived the K-Pg event and are represented by an almost-continuous dental fossil record. However, the precise dynamics of their transition through this interval remain uncertain [3]. Here, we apply 2D geometric morphometrics to reconstruct global and regional dental morphospace variation among Lamniformes (Mackerel sharks) and Carcharhiniformes (Ground sharks). These clades are prevalent predators in today's oceans, and were geographically widespread during the late Cretaceous-early Palaeogene. Our results reveal a decoupling of morphological disparity and taxonomic richness. Indeed, shark disparity was nearly static across the K-Pg extinction, in contrast to abrupt declines among other higher-trophic-level marine predators [4, 5]. Nevertheless, specific patterns indicate that an asymmetric extinction occurred among lamniforms possessing low-crowned/triangular teeth and that a subsequent proliferation of carcharhiniforms with similar tooth morphologies took place during the early Paleocene. This compositional shift in post-Mesozoic shark lineages hints at a profound and persistent K-Pg signature evident in the heterogeneity of modern shark communities. Moreover, such wholesale lineage turnover coincided with the loss of many cephalopod [6] and pelagic amniote [5] groups, as well as the explosive radiation of middle trophic-level teleost fishes [1]. We hypothesize that a combination of prey availability and post-extinction trophic cascades favored extant shark antecedents and laid the foundation for their extensive diversification later in the Cenozoic [7-10].


Assuntos
Dentição , Extinção Biológica , Fósseis/anatomia & histologia , Tubarões/anatomia & histologia , Animais , Evolução Biológica , Dente/anatomia & histologia
13.
Biol Lett ; 13(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592520

RESUMO

Recent evidence for feathers in theropods has led to speculations that the largest tyrannosaurids, including Tyrannosaurus rex, were extensively feathered. We describe fossil integument from Tyrannosaurus and other tyrannosaurids (Albertosaurus, Daspletosaurus, Gorgosaurus and Tarbosaurus), confirming that these large-bodied forms possessed scaly, reptilian-like skin. Body size evolution in tyrannosauroids reveals two independent occurrences of gigantism; specifically, the large sizes in Yutyrannus and tyrannosaurids were independently derived. These new findings demonstrate that extensive feather coverings observed in some early tyrannosauroids were lost by the Albian, basal to Tyrannosauridae. This loss is unrelated to palaeoclimate but possibly tied to the evolution of gigantism, although other mechanisms exist.


Assuntos
Gigantismo , Animais , Evolução Biológica , Plumas , Fósseis , Tegumento Comum
14.
Evolution ; 69(7): 1728-44, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26095296

RESUMO

The anterior cervical vertebrae form the skeletal connection between the cranial and postcranial skeletons in higher tetrapods. As a result, the morphology of the atlas-axis complex is likely to be shaped by selection pressures acting on either the head or neck. The neoceratopsian (Reptilia:Dinosauria) syncervical represents one of the most highly modified atlas-axis regions in vertebrates, being formed by the complete coalescence of the three most anterior cervical vertebrae. In ceratopsids, the syncervical has been hypothesized to be an adaptation to support a massive skull, or to act as a buttress during intraspecific head-to-head combat. Here, we test these functional/adaptive hypotheses within a phylogenetic framework and critically examine the previously proposed methods for quantifying relative head size in the fossil record for the first time. Results indicate that neither the evolution of cranial weaponry nor large head size correlates with the origin of cervical fusion in ceratopsians, and we, therefore, reject both adaptive hypotheses for the origin of the syncervical. Anterior cervical fusion has evolved independently in a number of amniote clades, and further research on extant groups with this peculiar anatomy is needed to understand the evolutionary basis for cervical fusion in Neoceratopsia.


Assuntos
Evolução Biológica , Vértebras Cervicais/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Adaptação Biológica , Animais , Cabeça/anatomia & histologia , Pescoço/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
15.
Biol Lett ; 11(6): 20150229, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26041865

RESUMO

Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Plumas/anatomia & histologia , Fósseis/anatomia & histologia , Tegumento Comum/anatomia & histologia , Animais , Funções Verossimilhança , Filogenia
16.
J Anat ; 226(4): 322-33, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25689039

RESUMO

Tooth counts are commonly recorded in fossil diapsid reptiles and have been used for taxonomic and phylogenetic purposes under the assumption that differences in the number of teeth are largely explained by interspecific variation. Although phylogeny is almost certainly one of the greatest factors influencing tooth count, the relative role of intraspecific variation is difficult, and often impossible, to test in the fossil record given the sample sizes available to palaeontologists and, as such, is best investigated using extant models. Intraspecific variation (largely manifested as size-related or ontogenetic variation) in tooth counts has been examined in extant squamates (lizards and snakes) but is poorly understood in archosaurs (crocodylians and dinosaurs). Here, we document tooth count variation in two species of extant crocodylians (Alligator mississippiensis and Crocodylus porosus) as well as a large varanid lizard (Varanus komodoensis). We test the hypothesis that variation in tooth count is driven primarily by growth and thus predict significant correlations between tooth count and size, as well as differences in the frequency of deviation from the modal tooth count in the premaxilla, maxilla, and dentary. In addition to tooth counts, we also document tooth allometry in each species and compare these results with tooth count change through growth. Results reveal no correlation of tooth count with size in any element of any species examined here, with the exception of the premaxilla of C. porosus, which shows the loss of one tooth position. Based on the taxa examined here, we reject the hypothesis, as it is evident that variation in tooth count is not always significantly correlated with growth. However, growth trajectories of smaller reptilian taxa show increases in tooth counts and, although current samples are small, suggest potential correlates between tooth count trajectories and adult size. Nevertheless, interspecific variation in growth patterns underscores the importance of considering and understanding growth when constructing taxonomic and phylogenetic characters, in particular for fossil taxa where ontogenetic patterns are difficult to reconstruct.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Dentição , Lagartos/anatomia & histologia , Jacarés e Crocodilos/crescimento & desenvolvimento , Animais , Evolução Biológica , Fósseis , Lagartos/crescimento & desenvolvimento , Filogenia , Especificidade da Espécie , Dente/anatomia & histologia
17.
PLoS Biol ; 12(5): e1001853, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24802911

RESUMO

Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages.


Assuntos
Aves/classificação , Tamanho Corporal/fisiologia , Dinossauros/classificação , Fósseis , Especiação Genética , Filogenia , Adaptação Fisiológica , Distribuição Animal , Animais , Biodiversidade , Aves/anatomia & histologia , Aves/fisiologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Extinção Biológica , Extremidades/anatomia & histologia , Extremidades/fisiologia , Plumas/anatomia & histologia , Plumas/fisiologia
19.
BMC Biol ; 10: 60, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22781121

RESUMO

BACKGROUND: Body size is intimately related to the physiology and ecology of an organism. Therefore, accurate and consistent body mass estimates are essential for inferring numerous aspects of paleobiology in extinct taxa, and investigating large-scale evolutionary and ecological patterns in the history of life. Scaling relationships between skeletal measurements and body mass in birds and mammals are commonly used to predict body mass in extinct members of these crown clades, but the applicability of these models for predicting mass in more distantly related stem taxa, such as non-avian dinosaurs and non-mammalian synapsids, has been criticized on biomechanical grounds. Here we test the major criticisms of scaling methods for estimating body mass using an extensive dataset of mammalian and non-avian reptilian species derived from individual skeletons with live weights. RESULTS: Significant differences in the limb scaling of mammals and reptiles are noted in comparisons of limb proportions and limb length to body mass. Remarkably, however, the relationship between proximal (stylopodial) limb bone circumference and body mass is highly conserved in extant terrestrial mammals and reptiles, in spite of their disparate limb postures, gaits, and phylogenetic histories. As a result, we are able to conclusively reject the main criticisms of scaling methods that question the applicability of a universal scaling equation for estimating body mass in distantly related taxa. CONCLUSIONS: The conserved nature of the relationship between stylopodial circumference and body mass suggests that the minimum diaphyseal circumference of the major weight-bearing bones is only weakly influenced by the varied forces exerted on the limbs (that is, compression or torsion) and most strongly related to the mass of the animal. Our results, therefore, provide a much-needed, robust, phylogenetically corrected framework for accurate and consistent estimation of body mass in extinct terrestrial quadrupeds, which is important for a wide range of paleobiological studies (including growth rates, metabolism, and energetics) and meta-analyses of body size evolution.


Assuntos
Tamanho Corporal , Osso e Ossos/anatomia & histologia , Extremidades/anatomia & histologia , Mamíferos/anatomia & histologia , Répteis/anatomia & histologia , Animais , Marcha/fisiologia , Análise dos Mínimos Quadrados , Filogenia , Postura/fisiologia
20.
PLoS One ; 6(9): e25186, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21969872

RESUMO

The well-sampled Late Cretaceous fossil record of North America remains the only high-resolution dataset for evaluating patterns of dinosaur diversity leading up to the terminal Cretaceous extinction event. Hadrosaurine hadrosaurids (Dinosauria: Ornithopoda) closely related to Edmontosaurus are among the most common megaherbivores in latest Campanian and Maastrichtian deposits of western North America. However, interpretations of edmontosaur species richness and biostratigraphy have been in constant flux for almost three decades, although the clade is generally thought to have undergone a radiation in the late Maastrichtian. We address the issue of edmontosaur diversity for the first time using rigorous morphometric analyses of virtually all known complete edmontosaur skulls. Results suggest only two valid species, Edmontosaurus regalis from the late Campanian, and E. annectens from the late Maastrichtian, with previously named taxa, including the controversial Anatotitan copei, erected on hypothesized transitional morphologies associated with ontogenetic size increase and allometric growth. A revision of North American hadrosaurid taxa suggests a decrease in both hadrosaurid diversity and disparity from the early to late Maastrichtian, a pattern likely also present in ceratopsid dinosaurs. A decline in the disparity of dominant megaherbivores in the latest Maastrichtian interval supports the hypothesis that dinosaur diversity decreased immediately preceding the end Cretaceous extinction event.


Assuntos
Dinossauros/classificação , Crânio/anatomia & histologia , Animais , Biodiversidade , Evolução Biológica , Classificação , Dinossauros/genética , Fósseis , América do Norte , Paleontologia/métodos , Filogenia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA