Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534554

RESUMO

Cerebral palsy poses challenges in walking, necessitating ankle foot orthoses (AFOs) for stability. Gait analysis, particularly on slopes, is crucial for effective AFO assessment. The study aimed to compare the performance of commercially available AFOs with a new sports-specific AFO in children with hemiplegic cerebral palsy and to assess the effects of varying slopes on gait. Eighteen participants, aged 6-11, with hemiplegia, underwent gait analysis using GRAIL technology. Two AFO types were tested on slopes (uphill +10 deg, downhill -5 deg, level-ground). Kinematic, kinetic, and spatiotemporal parameters were analyzed. The new AFO contributed to significant changes in ankle dorsi-plantar-flexion, foot progression, and trunk and hip rotation during downhill walking. Additionally, the new AFO had varied effects on spatiotemporal gait parameters, with an increased stride length during downhill walking. Slope variations significantly influenced the kinematics and kinetics. This study provides valuable insights into AFO effectiveness and the impact of slopes on gait in hemiplegic cerebral palsy. The findings underscore the need for personalized interventions, considering environmental factors, and enhancing clinical and research approaches for improving mobility in cerebral palsy.

2.
J Sports Med Phys Fitness ; 64(6): 526-531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38385638

RESUMO

BACKGROUND: Physical activity may help prevent the development of adverse health disorders in children. Thus, it is fundamental to assess key physical skills, such as jumping and running, from an early age. Several studies proposed test batteries to evaluate these motor skills in preschoolers, but no research studied their association. Therefore, this study aimed to evaluate the relationship between jump performance, including force production parameters, and sprint performance in preschool children. METHODS: Twenty-nine preschoolers, aged 4 to 5, underwent assessments, including countermovement jumps (CMJ) and standing long jumps (SLJ) on a force plate. Then they performed a 10-meter linear sprint assessed using photocells. RESULTS: Regression models revealed that SLJ distance emerged as a significant predictor (R2=49.3%, P<0.001) of sprint horizontal velocity, while, for sprint momentum (R2=34.3%), both SLJ distance (P=0.004) and SLJ vertical peak force (P=0.036) were found to be significant predictors. CONCLUSIONS: The findings showed that short-distance (i.e., 10 m) linear sprint performance, both velocity and momentum, in preschoolers may be predicted mainly using SLJ assessment. These findings underscore the importance of early motor skill development in shaping physical abilities and their potential relationship in preschool children.


Assuntos
Desempenho Atlético , Destreza Motora , Corrida , Humanos , Pré-Escolar , Feminino , Masculino , Corrida/fisiologia , Destreza Motora/fisiologia , Desempenho Atlético/fisiologia , Teste de Esforço , Exercício Pliométrico
3.
Res Q Exerc Sport ; : 1-7, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319327

RESUMO

Purpose: Alpine ski racing is a complex sport where no single factor can exclusively account for performance. We assessed body composition, using bioelectrical impedance vector analysis (BIVA), and our purpose was to study its influence on the strength and power profile of young alpine skiers. Methods: Anthropometric measurements and advanced BIVA parameters were recorded on eighteen alpine ski racers (6 females/12 males; 17.0 ± 1.3 years; 172.2 ± 9.3 cm; 68.5 ± 9.8 kg). Dynamic force and power were assessed using countermovement jumps (CMJ), while maximal isometric strength was evaluated for hip flexion-extension and abduction-adduction movements. Stepwise regression models examined the relationship between BIVA-derived parameters and strength/power variables. Results: Body cellular mass (BCM) positively related to jump height (p = .021, R2 = 74%), jump momentum (p < .001, R2 = 89%), reactive strength index modified (p = .026, R2 = 75%) and peak concentric power (p < .001, R2 = 82%), while intracellular water (ICW) related to peak eccentric (p < .001, R2 = 76%) and concentric force (p < .001, R2 = 77%) as well as to concentric rate of force development together with the phase angle (PhA) (p = .008, R2 = 79% and R2 = 0.015). Regarding isometric assessment, ICW was a significant predictor for all four movement directions, and PhA contributed to hip adduction strength. Conclusions: Body composition, particularly BCM and ICW, significantly predict force- and power-related factors in young alpine skiers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36361083

RESUMO

Running is an essential activity for children with cerebral palsy (CP). This study aims to characterize the locomotor pattern of running in hemiplegic children with new generation ankle foot orthosis (AFOs) conceived to foster intense motor activities such as running. A group of 18 children with spastic hemiplegia was recruited. A biomechanical multivariable comparison was made between barefoot and with AFO running trials. The focus was devoted to bilateral sagittal plane hip, knee, ankle kinematics and kinetics, and three-dimensional ground reaction forces. Wearing the orthoses, the children were found to reduce cadence and the duration of the stance phase as well as increase the step and stride length. The new AFO resulted in significant changes in kinematics of affected ankle both at initial contact 0-3% GC (p < 0.017) and during the entire swing phase 31-100%GC (p < 0.001) being the ankle more dorsiflexed with AFO compared to barefoot condition. Ankle power was found to differ significantly both in absorption and generation 5-10%GC (p < 0.001); 21-27%GC (p < 0.001) with a reduction in both cases when the AFO was worn. No statistical differences were recorded in the GRF components, in the affected ankle torque and hip and knee kinematics and kinetics.


Assuntos
Paralisia Cerebral , Órtoses do Pé , Corrida , Criança , Humanos , Tornozelo , Marcha
5.
Artigo em Inglês | MEDLINE | ID: mdl-36429447

RESUMO

Jump tests are simple, quick to execute, and considered the most reliable tool to measure lower extremities power and explosiveness in athletes. Wearable inertial sensors allow the assessment of jumping performance on any surface. The validity of inertial sensors measurements is a pivotal prerequisite to reliably implement their utilization in the clinical practice. Twenty-seven athletes (20 M/7 F, age: 27 ± 7 years old) performed five double-leg countermovement jumps (CMJs) and three single-leg CMJs per side with their hands on their hips. Jump height was measured/computed simultaneously with the optoelectronic system, force platforms, and the Baiobit inertial sensor system. The athletes completed the international physical activity questionnaire (IPAQ). When comparing the methods (Baiobit vs. force platforms), a non-statistically significant bias of 1.8 cm was found for two-leg CMJs and -0.6 cm for single-leg CMJs. The intraclass correlation coefficients (ICCs) was "excellent" for double-leg CMJs (ICC = 0.92, 95% CI = 0.89-0.94) and "good" for single-leg CMJs (ICC = 0.89, 95% CI = 0.85-0.91). When comparing the methods (Baiobit vs. force platforms + optoelectronic system), a non-statistically significant bias of -0.9 cm was found for two-leg CMJs and -1.2 cm for single-leg CMJs. The intraclass correlation coefficient (ICC) was "good" for both double-leg CMJs (ICC = 0.80, 95% CI = 0.73-0.85) and for single-leg CMJs (ICC = 0.86, 95% CI = 0.80-0.89). Baiobit tends to overestimate double- and single-leg CMJ height measurements; however, it can be recommended in the world of rehabilitation and sport analysis.


Assuntos
Atletas , Perna (Membro) , Humanos , Adulto Jovem , Adulto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA