Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(38): 385704, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32442985

RESUMO

For graphitic materials, Raman technique is a common method for temperature measurements through analysis of phonon frequencies. Temperature (T) induced downshift of the bond-stretching G mode (ΔG) is well known, but experimentally obtained thermal coefficients ΔG/ΔT vary considerably between diverse works. Further, ΔG/ΔT coefficients usually were evaluated for relatively low temperatures and found to differ strongly for mono, a few and multilayer graphene. We studied G band behavior in freely suspended multilayer graphene flakes (or graphite nanoflakes) under localized heating by a laser beam. Analysis of Stokes and anti-Stokes signals showed that G band has a complex structure and can be deconvoluted into several peaks that demonstrate distinctly different behavior under heating. A plausible assumption is that these peaks correspond to several groups of graphitic layers (surface, near-surface and bulk) and then different thermal coefficients were determined for these groups. This behavior can be explained by decreasing interaction between surface layers and underlying material at high temperatures that affects especially vibrational properties of a few outermost layers. Estimates of temperatures using anti-Stokes/Stokes intensity ratio (I aS/I S) were also done to give results comparable with those obtained from G band downshift, T ΔG ≈ T aS/S, supporting the proposed model. The range of temperatures obtained by laser heating, as evaluated by both methods, was from 450 to 1200 K.

2.
Environ Sci Process Impacts ; 17(4): 775-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25699655

RESUMO

Understanding soil organic matter is necessary for the development of soil amendments, which are important for sustaining agriculture in humid tropical climates. Ancient Amazonian anthrosols are uniquely high in black recalcitrant carbon, making them extremely fertile. In this study, we use high-resolution electron microscopy and spectroscopy to resolve the oxidation process of carbon in the nanoscale crystallites within the black carbon grains of this special soil. Most alkali and acid chemical extraction methods are known to cause chemical modifications in soil organic matter and to give poor or no information about the real spatial structure of soil aggregates. However, here we show that carbon-oxygen functional groups such as phenol, carbonyl, and carboxyl dominate over different spatial regions, with areas varying from over tens to hundreds of nm(2). The chemical maps show that in the nanoscale grain, the surface has a tendency to be less aromatic than the grain core, where higher oxidative-degradation levels are indicated by the presence of carbonyl and carboxyl groups. A deep understanding of these structures could allow artificial reproduction of these natural events.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Fuligem/análise , Agricultura , Brasil , Nanoestruturas/análise
3.
Nano Lett ; 12(8): 4110-6, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22731916

RESUMO

In this work, an atomic force microscope (AFM) is combined with a confocal Raman spectroscopy setup to follow in situ the evolution of the G-band feature of isolated single-wall carbon nanotubes (SWNTs) under transverse deformation. The SWNTs are pressed by a gold AFM tip against the substrate where they are sitting. From eight deformed SWNTs, five exhibit an overall decrease in the Raman signal intensity, while three exhibit vibrational changes related to the circumferential symmetry breaking. Our results reveal chirality dependent effects, which are averaged out in SWNT bundle measurements, including a previously elusive mode symmetry breaking that is here explored using molecular dynamics calculations.

4.
Nano Lett ; 11(8): 3190-6, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21696186

RESUMO

We present a Raman study of Ar(+)-bombarded graphene samples with increasing ion doses. This allows us to have a controlled, increasing, amount of defects. We find that the ratio between the D and G peak intensities, for a given defect density, strongly depends on the laser excitation energy. We quantify this effect and present a simple equation for the determination of the point defect density in graphene via Raman spectroscopy for any visible excitation energy. We note that, for all excitations, the D to G intensity ratio reaches a maximum for an interdefect distance ∼3 nm. Thus, a given ratio could correspond to two different defect densities, above or below the maximum. The analysis of the G peak width and its dispersion with excitation energy solves this ambiguity.

5.
Phys Rev Lett ; 103(18): 186101, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905816

RESUMO

We develop a theory of near-field Raman enhancement in one-dimensional systems, and report supporting experimental results for carbon nanotubes. The enhancement is established by a laser-irradiated nanoplasmonic structure acting as an optical antenna. The near-field Raman intensity is inversely proportional to the 10th power of the separation between the enhancing structure and the one-dimensional system. Experimental data obtained from single-wall carbon nanotubes indicate that the Raman enhancement process is not significantly influenced by the specific phonon eigenvector, and is mainly defined by the properties of the nanoplasmonic structure.

6.
J Nanosci Nanotechnol ; 7(9): 3071-80, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18019131

RESUMO

The production and physical properties of nanowires and nanoribbons formed by methylphosphonic acid (MPA)--CH3PO(OH)2--were investigated. These structures are formed on an aluminum coated substrate when immersed in an ethanolic solution of MPA for several days. A careful investigation of the growth conditions resulted in a narrow window of solution concentrations and temperatures for the successful development of nanowires and nanoribbons. Several different techniques were employed to characterize these nanostructures: (1) Photoluminescence experiments showed a strong emission at 2.3 eV (green), which is visible to the naked eye; (2) X-ray diffraction experiments indicated a significant cristalinity, in agreement with atomic force microscopy (AFM) and transmission electron microscopy (TEM) morphology images, which show organized nano-scale wires and ribbons, (furthermore, AFM-Phase and TEM images also suggest that nanoribbons are formed by well-aligned nanowires); (3) Conductive-AFM experiments revealed an intermediary conductivity for these structures (10(-1)/Ohm x m), which is similar to some intrinsic semiconductors and; (4) finally, Infrared, Raman, and X-Ray Photoelectron Spectroscopies produced information about the contents, structure, and composition of both wires and ribbons.


Assuntos
Nanopartículas/química , Nanotubos de Carbono/química , Nanofios/química , Compostos Organofosforados/química , Absorção , Alumínio/química , Luz , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Temperatura , Difração de Raios X
7.
Phys Chem Chem Phys ; 9(11): 1276-91, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17347700

RESUMO

Raman spectroscopy has historically played an important role in the structural characterization of graphitic materials, in particular providing valuable information about defects, stacking of the graphene layers and the finite sizes of the crystallites parallel and perpendicular to the hexagonal axis. Here we review the defect-induced Raman spectra of graphitic materials from both experimental and theoretical standpoints and we present recent Raman results on nanographites and graphenes. The disorder-induced D and D' Raman features, as well as the G'-band (the overtone of the D-band which is always observed in defect-free samples), are discussed in terms of the double-resonance (DR) Raman process, involving phonons within the interior of the 1st Brillouin zone of graphite and defects. In this review, experimental results for the D, D' and G' bands obtained with different laser lines, and in samples with different crystallite sizes and different types of defects are presented and discussed. We also present recent advances that made possible the development of Raman scattering as a tool for very accurate structural analysis of nano-graphite, with the establishment of an empirical formula for the in- and out-of-plane crystalline size and even fancier Raman-based information, such as for the atomic structure at graphite edges, and the identification of single versus multi-graphene layers. Once established, this knowledge provides a powerful machinery to understand newer forms of sp(2) carbon materials, such as the recently developed pitch-based graphitic foams. Results for the calculated Raman intensity of the disorder-induced D-band in graphitic materials as a function of both the excitation laser energy (E(laser)) and the in-plane size (L(a)) of nano-graphites are presented and compared with experimental results. The status of this research area is assessed, and opportunities for future work are identified.


Assuntos
Grafite/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Análise Espectral Raman/métodos , Simulação por Computador , Conformação Molecular , Tamanho da Partícula
8.
Phys Rev Lett ; 93(4): 047403, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15323793

RESUMO

A polarized Raman study of nanographite ribbons on a highly oriented pyrolytic graphite substrate is reported. The Raman peak of the nanographite ribbons exhibits an intensity dependence on the light polarization direction relative to the nanographite ribbon axis. This result is due to the quantum confinement of the electrons in the 1D band structure of the nanographite ribbons, combined with the anisotropy of the light absorption in 2D graphite, in agreement with theoretical predictions.

9.
Phys Rev Lett ; 93(24): 247401, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15697858

RESUMO

A study of step edges in graphite with different atomic structures combining Raman spectroscopy and scanning probe microscopy is presented. The orientation of the carbon hexagons with respect to the edge axis, in the so-called armchair or zigzag arrangements, is distinguished spectroscopically by the intensity of a disorder-induced Raman peak. This effect is explained by applying the double resonance theory to a semi-infinite graphite crystal and by considering the one-dimensional character of the defect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA