Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 82(3): 458-471, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903608

RESUMO

Despite treatment with intensive chemotherapy, acute myelogenous leukemia (AML) remains an aggressive malignancy with a dismal outcome in most patients. We found that AML cells exhibit an unusually rapid accumulation of the repressive histone mark H3K27me3 on nascent DNA. In cell lines, primary cells and xenograft mouse models, inhibition of the H3K27 histone methyltransferase EZH2 to decondense the H3K27me3-marked chromatin of AML cells enhanced chromatin accessibility and chemotherapy-induced DNA damage, apoptosis, and leukemia suppression. These effects were further promoted when chromatin decondensation of AML cells was induced upon S-phase entry after release from a transient G1 arrest mediated by CDK4/6 inhibition. In the p53-null KG-1 and THP-1 AML cell lines, EZH2 inhibitor and doxorubicin cotreatment induced transcriptional reprogramming that was, in part, dependent on derepression of H3K27me3-marked gene promoters and led to increased expression of cell death-promoting and growth-inhibitory genes.In conclusion, decondensing H3K27me3-marked chromatin by EZH2 inhibition represents a promising approach to improve the efficacy of DNA-damaging cytotoxic agents in patients with AML. This strategy might allow for a lowering of chemotherapy doses, with a consequent reduction of treatment-related side effects in elderly patients with AML or those with significant comorbidities. SIGNIFICANCE: Pharmacological inhibition of EZH2 renders DNA of AML cells more accessible to cytotoxic agents, facilitating leukemia suppression with reduced doses of chemotherapy.See related commentary by Adema and Colla, p. 359.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Humanos , Camundongos
2.
Cell ; 155(1): 107-20, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074864

RESUMO

Polycomb repressive complex 2 (PRC2) regulates gene expression during lineage specification through trimethylation of lysine 27 on histone H3 (H3K27me3). In Drosophila, polycomb binding sites are dynamic chromatin regions enriched with the histone variant H3.3. Here, we show that, in mouse embryonic stem cells (ESCs), H3.3 is required for proper establishment of H3K27me3 at the promoters of developmentally regulated genes. Upon H3.3 depletion, these promoters show reduced nucleosome turnover measured by deposition of de novo synthesized histones and reduced PRC2 occupancy. Further, we show H3.3-dependent interaction of PRC2 with the histone chaperone, Hira, and that Hira localization to chromatin requires H3.3. Our data demonstrate the importance of H3.3 in maintaining a chromatin landscape in ESCs that is important for proper gene regulation during differentiation. Moreover, our findings support the emerging notion that H3.3 has multiple functions in distinct genomic locations that are not always correlated with an "active" chromatin state.


Assuntos
Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células-Tronco Embrionárias/citologia , Chaperonas de Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
Cell ; 150(5): 922-33, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22921915

RESUMO

Propagation of gene-expression patterns through the cell cycle requires the existence of an epigenetic mark that re-establishes the chromatin architecture of the parental cell in the daughter cells. We devised assays to determine which potential epigenetic marks associate with epigenetic maintenance elements during DNA replication in Drosophila embryos. Histone H3 trimethylated at lysines 4 or 27 is present during transcription but, surprisingly, is replaced by nonmethylated H3 following DNA replication. Methylated H3 is detected on DNA only in nuclei not in S phase. In contrast, the TrxG and PcG proteins Trithorax and Enhancer-of-Zeste, which are H3K4 and H3K27 methylases, and Polycomb continuously associate with their response elements on the newly replicated DNA. We suggest that histone modification enzymes may re-establish the histone code on newly assembled unmethylated histones and thus may act as epigenetic marks.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Código das Histonas , Histonas/metabolismo , Animais , Drosophila/citologia , Drosophila/genética , Embrião não Mamífero/metabolismo , Epigênese Genética , Complexo Repressor Polycomb 1 , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Fase S
4.
Nature ; 488(7411): 409-13, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22801502

RESUMO

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.


Assuntos
Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Células Germinativas/metabolismo , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Alelos , Animais , Biocatálise , Linhagem da Célula , Quimera , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Feminino , Fibroblastos , Técnicas de Silenciamento de Genes , Células Germinativas/enzimologia , Células HEK293 , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Transgenes/genética
5.
Proc Natl Acad Sci U S A ; 108(19): 7956-61, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518888

RESUMO

Rearrangements of the MLL (ALL1) gene are very common in acute infant and therapy-associated leukemias. The rearrangements underlie the generation of MLL fusion proteins acting as potent oncogenes. Several most consistently up-regulated targets of MLL fusions, MEIS1, HOXA7, HOXA9, and HOXA10 are functionally related and have been implicated in other types of leukemias. Each of the four genes was knocked down separately in the human precursor B-cell leukemic line RS4;11 expressing MLL-AF4. The mutant and control cells were compared for engraftment in NOD/SCID mice. Engraftment of all mutants into the bone marrow (BM) was impaired. Although homing was similar, colonization by the knockdown cells was slowed. Initially, both types of cells were confined to the trabecular area; this was followed by a rapid spread of the WT cells to the compact bone area, contrasted with a significantly slower process for the mutants. In vitro and in vivo BrdU incorporation experiments indicated reduced proliferation of the mutant cells. In addition, the CXCR4/SDF-1 axis was hampered, as evidenced by reduced migration toward an SDF-1 gradient and loss of SDF-1-augmented proliferation in culture. The very similar phenotype shared by all mutant lines implies that all four genes are involved and required for expansion of MLL-AF4 associated leukemic cells in mice, and down-regulation of any of them is not compensated by the others.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Técnicas de Silenciamento de Genes , Rearranjo Gênico , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Meis1 , Transplante de Neoplasias , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Interferente Pequeno/genética , Transplante Heterólogo
6.
Genes Dev ; 22(24): 3403-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19141473

RESUMO

Mixed-lineage leukemia (MLL) fusion proteins are potent inducers of leukemia, but how these proteins generate aberrant gene expression programs is poorly understood. Here we show that the MLL-AF4 fusion protein occupies developmental regulatory genes important for hematopoietic stem cell identity and self-renewal in human leukemia cells. These MLL-AF4-bound regions have grossly altered chromatin structure, with histone modifications catalyzed by trithorax group proteins and DOT1 extending across large domains. Our results define direct targets of the MLL fusion protein, reveal the global role of epigenetic misregulation in leukemia, and identify new targets for therapeutic intervention in cancer.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Leucemia/genética , Linhagem Celular , Células-Tronco Hematopoéticas/citologia , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
Mol Cell Biol ; 27(24): 8466-79, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923682

RESUMO

Histone lysine methylation regulates genomic functions, including gene transcription. Previous reports found various degrees of methylation at H3K4, H3K9, and H4K20 within the transcribed region of active mammalian genes. To identify the enzymes responsible for placing these modifications, we examined ASH1L, the mammalian homolog of the Drosophila melanogaster Trithorax group (TrxG) protein Ash1. Drosophila Ash1 has been reported to methylate H3K4, H3K9, and H4K20 at its target sites. Here we demonstrate that mammalian ASH1L associates with the transcribed region of all active genes examined, including Hox genes. The distribution of ASH1L in transcribed chromatin strongly resembles that of methylated H3K4 but not that of H3K9 or H4K20. Accordingly, the SET domain of ASH1L methylates H3K4 in vitro, and knockdown of ASH1L expression reduced H3K4 trimethylation at HoxA10 in vivo. Notably, prior methylation at H3K9 reduced ASH1L-mediated methylation at H3K4, suggesting cross-regulation among these marks. Drosophila ash1 and trithorax interact genetically, and the mammalian TrxG protein MLL1 and ASH1L display highly similar distributions and substrate specificities. However, by using MLL null cell lines we found that their recruitments occur independently of each other. Collectively, our data suggest that ASH1L occupies most, if not all, active genes and methylates histone H3 in a nonredundant fashion at a subset of genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Genes Essenciais , Células HeLa , Histona Metiltransferases , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Lisina/metabolismo , Metilação , Camundongos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ligação Proteica , Proteínas Metiltransferases , Estrutura Terciária de Proteína , Fatores de Transcrição/química
8.
Nature ; 449(7163): 689-94, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17851529

RESUMO

The recent discovery of a large number of histone demethylases suggests a central role for these enzymes in regulating histone methylation dynamics. Histone H3K27 trimethylation (H3K27me3) has been linked to polycomb-group-protein-mediated suppression of Hox genes and animal body patterning, X-chromosome inactivation and possibly maintenance of embryonic stem cell (ESC) identity. An imbalance of H3K27 methylation owing to overexpression of the methylase EZH2 has been implicated in metastatic prostate and aggressive breast cancers. Here we show that the JmjC-domain-containing related proteins UTX and JMJD3 catalyse demethylation of H3K27me3/2. UTX is enriched around the transcription start sites of many HOX genes in primary human fibroblasts, in which HOX genes are differentially expressed, but is selectively excluded from the HOX loci in ESCs, in which HOX genes are largely silent. Consistently, RNA interference inhibition of UTX led to increased H3K27me3 levels at some HOX gene promoters. Importantly, morpholino oligonucleotide inhibition of a zebrafish UTX homologue resulted in mis-regulation of hox genes and a striking posterior developmental defect, which was partially rescued by wild-type, but not by catalytically inactive, human UTX. Taken together, these findings identify a small family of H3K27 demethylases with important, evolutionarily conserved roles in H3K27 methylation regulation and in animal anterior-posterior development.


Assuntos
Padronização Corporal , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Linhagem Celular , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Genoma/genética , Histona Desmetilases , Humanos , Histona Desmetilases com o Domínio Jumonji , Metilação , Camundongos , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Oxirredutases N-Desmetilantes/metabolismo , Transcrição Gênica/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Nature ; 449(7163): 731-4, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17713478

RESUMO

The trithorax and the polycomb group proteins are chromatin modifiers, which play a key role in the epigenetic regulation of development, differentiation and maintenance of cell fates. The polycomb repressive complex 2 (PRC2) mediates transcriptional repression by catalysing the di- and tri-methylation of Lys 27 on histone H3 (H3K27me2/me3). Owing to the essential role of the PRC2 complex in repressing a large number of genes involved in somatic processes, the H3K27me3 mark is associated with the unique epigenetic state of stem cells. The rapid decrease of the H3K27me3 mark during specific stages of embryogenesis and stem-cell differentiation indicates that histone demethylases specific for H3K27me3 may exist. Here we show that the human JmjC-domain-containing proteins UTX and JMJD3 demethylate tri-methylated Lys 27 on histone H3. Furthermore, we demonstrate that ectopic expression of JMJD3 leads to a strong decrease of H3K27me3 levels and causes delocalization of polycomb proteins in vivo. Consistent with the strong decrease in H3K27me3 levels associated with HOX genes during differentiation, we show that UTX directly binds to the HOXB1 locus and is required for its activation. Finally mutation of F18E9.5, a Caenorhabditis elegans JMJD3 orthologue, or inhibition of its expression, results in abnormal gonad development. Taken together, these results suggest that H3K27me3 demethylation regulated by UTX/JMJD3 proteins is essential for proper development. Moreover, the recent demonstration that UTX associates with the H3K4me3 histone methyltransferase MLL2 (ref. 8) supports a model in which the coordinated removal of repressive marks, polycomb group displacement, and deposition of activating marks are important for the stringent regulation of transcription during cellular differentiation.


Assuntos
Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas Nucleares/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Animais , Linhagem Celular , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Histona Desmetilases , Humanos , Histona Desmetilases com o Domínio Jumonji , Metilação , Proteínas Nucleares/genética , Oxirredutases N-Desmetilantes/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional
10.
Proc Natl Acad Sci U S A ; 104(36): 14442-7, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17726105

RESUMO

Erythropoietin-producing hepatoma-amplified sequence (Eph) receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, function as a unique signaling system triggered by cell-to-cell interaction and have been shown to mediate neurodevelopmental processes. In addition, recent studies showed deregulation of some of Eph/ephrin genes in human malignancies, suggesting the involvement of this signaling pathway in tumorigenesis. The ALL1 (also termed MLL) gene on human chromosome 11q23 was isolated by virtue of its involvement in recurrent chromosome translocations associated with acute leukemias with poor prognosis. The translocations fuse ALL1 to any of >50 partner genes and result in production of chimeric proteins composed of the ALL1 N terminus and the C terminus of the partner protein. The most common translocations in ALL1-associated leukemias are t(4;11) and t(9;11), which generate ALL1/AF4 and ALL1/AF9 fusion protein, respectively. In the present study, we sought to determine whether ALL1 fusion proteins are involved in regulation of Eph/ephrin genes. Screening of K562 cells producing recombinant ALL1/AF4 or ALL1/AF9 fusion protein revealed transcriptional up-regulation of the EphA7. Consistent with this finding, siRNA-mediated suppression of ALL1/AF4 in SEMK2 cells carrying the t(4;11) chromosome translocation resulted in down-regulation of EphA7. ChIP analysis demonstrated the occupancy of tagged ALL1 fusion proteins on the EphA7 promoter, pointing to EphA7 as a direct target of the formers. Further studies demonstrate that EphA7 up-regulation is accompanied by ERK phosphorylation. Finally, we show apoptotic cell death, specific for leukemic cells carrying the t(4;11) chromosome translocation, after treatment of the cells with an ERK phosphorylation blocker.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Receptor EphA7/metabolismo , Doença Aguda , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromossomos Humanos Par 4/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Histona-Lisina N-Metiltransferase , Humanos , Leucemia/genética , Leucemia/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Transcrição Gênica/genética , Tubercidina/análogos & derivados , Tubercidina/farmacologia
11.
Proc Natl Acad Sci U S A ; 104(26): 10980-5, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17581865

RESUMO

MicroRNAs (miRNAs) are noncoding small RNA of approximately 22 bases, which suppress expression of target genes through translational block or degradation of a target's transcript. Recent studies uncovered specific miRNA expression profiles in human malignancies. Nevertheless, the mechanisms underlying cancer-specific miRNA expression are largely unknown. miRNA biogenesis consists of a series of steps beginning with generation of a primary transcript, termed pri-miRNA, and continuing into excision of a stem-loop hairpin structure within pri-miRNA by the nuclear RNaseIII enzyme Drosha, transportation to the cytoplasm, and further processing by a second RNaseIII enzyme Dicer, into a 22-base mature duplex RNA. In principle, alteration in any step during this maturation process could affect miRNA production. The ALL-1 (also termed MLL) gene was originally isolated by virtue of its involvement in recurrent chromosome translocations associated with acute leukemias, particularly in infant and therapy-related leukemias. These translocations result in the fusion of ALL-1 with partner genes and the consequent production of chimeric leukemogenic proteins. Here, we identify specific miRNAs up-regulated in leukemias triggered by All1 fusions. Further, we demonstrate coimmunoprecipitation of the All1/Af4 and All1/Af9 fusions with Drosha, disrupted by treatment with DNase I. Finally, we present evidence from ChIP experiments for All1 fusion protein-mediated recruitment of Drosha to target genes encoding miRNAs. Such recruitment may underlie the enhanced expression of the relevant miRNAs.


Assuntos
Leucemia/genética , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/fisiologia , Processamento Pós-Transcricional do RNA , Ribonuclease III/fisiologia , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Humanos , Leucemia/etiologia , MicroRNAs/genética , Ribonuclease III/metabolismo , Regulação para Cima
12.
Mol Cell Biol ; 27(5): 1889-903, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17178841

RESUMO

ALR (MLL2) is a member of the human MLL family, which belongs to a larger SET1 family of histone methyltransferases. We found that ALR is present within a stable multiprotein complex containing a cohort of proteins shared with other SET1 family complexes and several unique components, such as PTIP and the jumonji family member UTX. Like other complexes formed by SET1 family members, the ALR complex exhibited strong H3K4 methyltransferase activity, conferred by the ALR SET domain. By generating ALR knockdown cell lines and comparing their expression profiles to that of control cells, we identified a set of genes whose expression is activated by ALR. Some of these genes were identified by chromatin immunoprecipitation as direct ALR targets. The ALR complex was found to associate in an ALR-dependent fashion with promoters and transcription initiation sites of target genes and to induce H3K4 trimethylation. The most characteristic features of the ALR knockdown cells were changes in the dynamics and mode of cell spreading/polarization, reduced migration capacity, impaired anchorage-dependent and -independent growth, and decreased tumorigenicity in mice. Taken together, our results suggest that ALR is a transcriptional activator that induces the transcription of target genes by covalent histone modification. ALR appears to be involved in the regulation of adhesion-related cytoskeletal events, which might affect cell growth and survival.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Neoplasias/genética , Animais , Apoptose/genética , Adesão Celular/genética , Movimento Celular/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/isolamento & purificação , Perfilação da Expressão Gênica , Células HeLa , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células K562 , Metilação , Camundongos , Camundongos Nus , Proteínas de Neoplasias/isolamento & purificação , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Proteínas Metiltransferases , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica , Carga Tumoral
13.
Proc Natl Acad Sci U S A ; 102(24): 8603-8, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15941828

RESUMO

The mixed-lineage leukemia (MLL1/ALL-1/HRX) histone methyltransferase is involved in the epigenetic maintenance of transcriptional memory and the pathogenesis of human leukemias. To understand its role in cell type specification, we determined the human genomic binding sites of MLL1. We found that MLL1 functions as a human equivalent of yeast Set1. Like Set1, MLL1 localizes with RNA polymerase II (Pol II) to the 5' end of actively transcribed genes, where histone H3 lysine 4 trimethylation occurs. Consistent with this global role in transcription, MLL1 also localizes to microRNA (miRNA) loci that are involved in leukemia and hematopoiesis. In contrast to the 5' proximal binding behavior at most protein-coding genes, MLL1 occupies an extensive domain within a transcriptionally active region of the HoxA cluster. The ability of MLL1 to serve as a start site-specific global transcriptional regulator and to participate in larger chromatin domains at the Hox genes reveals dual roles for MLL1 in maintenance of cellular identity.


Assuntos
Cromossomos Humanos Par 7/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Genes Reguladores/genética , Genoma Humano , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Cromossomos Humanos Par 7/genética , Proteínas de Ligação a DNA/genética , Genes Homeobox/genética , Genômica/métodos , Histona Metiltransferases , Humanos , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Metiltransferases , Proto-Oncogenes/genética , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética
14.
Mol Cell Biol ; 25(5): 1891-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15713643

RESUMO

The evolutionary conserved SET domain is present in many eukaryotic chromatin-associated proteins, including some members of the trithorax (TrxG) group and the polycomb (PcG) group of epigenetic transcriptional regulators and modifiers of position effect variegation. All SET domains examined exhibited histone lysine methyltransferase activity, implicating these proteins in the generation of epigenetic marks. However, the mode of the initial recruitment of SET proteins to target genes and the way that their association with the genes is maintained after replication are not known. We found that SET-containing proteins of the SET1 and SET2 families contain motifs in the pre-SET region or at the pre-SET-SET and SET-post-SET boundaries which very tightly bind single-stranded DNA (ssDNA) and RNA. These motifs also bind stretches of ssDNA generated by superhelical tension or during the in vitro transcription of duplex DNA. Importantly, such binding withstands nucleosome assembly, interfering with the formation of regular nucleosomal arrays. Two representatives of the SUV39 SET family, SU(VAR)3-9 and G9a, did not bind ssDNA. The trxZ11 homeotic point mutation, which is located within TRX SET and disrupts embryonic development, impairs the ssDNA binding capacity of the protein. We suggest that the motifs described here may be directly involved in the biological function(s) of SET-containing proteins. The binding of single-stranded nucleic acids might play a role in the initial recruitment of the proteins to target genes, in the maintenance of their association after DNA replication, or in sustaining DNA stretches in a single-stranded configuration to allow for continuous transcription.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , DNA Super-Helicoidal/metabolismo , Nucleossomos/metabolismo , Transcrição Gênica/fisiologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Humanos , Mutação/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RNA/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
15.
Oncogene ; 23(53): 8639-48, 2004 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-15378024

RESUMO

The Mixed Lineage Leukemia (MLL) gene is involved in lymphoblastic and myeloid leukemia through chromosome translocations leading to fusion of MLL to partner genes, or through internal MLL rearrangements. MLL is the mammalian counterpart of the Drosophila trithorax (trx) gene, involved in maintaining active gene expression states. We have used transgenic Drosophila to assess the molecular targets and cellular processes affected by MLL and two of its leukemic fusion proteins. We find that whereas expression of normal human MLL in flies does not result in phenotypic alterations, overexpressing the human MLL-AF9 and MLL-AF4 proteins causes larval to pupal lethality, which interestingly resembles the phenotypes displayed by certain Drosophila trx mutant alleles. MLL-AF9 and MLL-AF4 transgenic flies exhibit antagonistic alterations in cell cycle progression. Additionally, flies expressing MLL-AF9 display impairment in higher order chromatin integrity, evidenced in decondensation of mitotic figures. The effects of MLL fusion proteins in Drosophila suggest that alteration of chromatin structure by MLL fusion proteins may contribute to the lethal phenotype. Our results indicate that the mode(s) of action of MLL-AF9 in Drosophila varies from that of MLL-AF4. Taken together, the expression of MLL fusion proteins in Drosophila provides a new and powerful system to reveal and characterize biological activities associated with MLL fusion proteins.


Assuntos
Ciclo Celular , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína de Leucina Linfoide-Mieloide , Ligação Proteica , Proto-Oncogenes/genética , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Taxa de Sobrevida , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fatores de Transcrição/genética
17.
Nat Cell Biol ; 6(2): 162-7, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14730313

RESUMO

Rapid induction of the Drosophila melanogaster heat shock gene hsp70 is achieved through the binding of heat shock factor (HSF) to heat shock elements (HSEs) located upstream of the transcription start site (reviewed in ref. 3). The subsequent recruitment of several other factors, including Spt5, Spt6 and FACT, is believed to facilitate Pol II elongation through nucleosomes downstream of the start site. Here, we report a novel mechanism of heat shock gene regulation that involves modifications of nucleosomes by the TAC1 histone modification complex. After heat stress, TAC1 is recruited to several heat shock gene loci, where its components are required for high levels of gene expression. Recruitment of TAC1 to the 5'-coding region of hsp70 seems to involve the elongating Pol II complex. TAC1 has both histone H3 Lys 4-specific (H3-K4) methyltransferase (HMTase) activity and histone acetyltransferase activity through Trithorax (Trx) and CREB-binding protein (CBP), respectively. Consistently, TAC1 is required for methylation and acetylation of nucleosomal histones in the 5'-coding region of hsp70 after induction, suggesting an unexpected role for TAC1 during transcriptional elongation.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Embrião não Mamífero/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Histonas/metabolismo , Temperatura Alta , Substâncias Macromoleculares , Nucleossomos/metabolismo , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica
18.
Nature ; 426(6962): 78-83, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14603321

RESUMO

Steroid hormones fulfil important functions in animal development. In Drosophila, ecdysone triggers moulting and metamorphosis through its effects on gene expression. Ecdysone works by binding to a nuclear receptor, EcR, which heterodimerizes with the retinoid X receptor homologue Ultraspiracle. Both partners are required for binding to ligand or DNA. Like most DNA-binding transcription factors, nuclear receptors activate or repress gene expression by recruiting co-regulators, some of which function as chromatin-modifying complexes. For example, p160 class coactivators associate with histone acetyltransferases and arginine histone methyltransferases. The Trithorax-related gene of Drosophila encodes the SET domain protein TRR. Here we report that TRR is a histone methyltransferases capable of trimethylating lysine 4 of histone H3 (H3-K4). trr acts upstream of hedgehog (hh) in progression of the morphogenetic furrow, and is required for retinal differentiation. Mutations in trr interact in eye development with EcR, and EcR and TRR can be co-immunoprecipitated on ecdysone treatment. TRR, EcR and trimethylated H3-K4 are detected at the ecdysone-inducible promoters of hh and BR-C in cultured cells, and H3-K4 trimethylation at these promoters is decreased in embryos lacking a functional copy of trr. We propose that TRR functions as a coactivator of EcR by altering the chromatin structure at ecdysone-responsive promoters.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/efeitos dos fármacos , Drosophila/embriologia , Ecdisona/farmacologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Olho/embriologia , Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas Hedgehog , Histona-Lisina N-Metiltransferase/genética , Masculino , Metilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Esteroides/metabolismo
19.
Mol Cell ; 10(5): 1119-28, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12453419

RESUMO

ALL-1 is a member of the human trithorax/Polycomb gene family and is also involved in acute leukemia. ALL-1 is present within a stable, very large multiprotein supercomplex composed of > or =29 proteins. The majority of the latter are components of the human transcription complexes TFIID (including TBP), SWI/SNF, NuRD, hSNF2H, and Sin3A. Other components are involved in RNA processing or in histone methylation. The complex remodels, acetylates, deacetylates, and methylates nucleosomes and/or free histones. The complex's H3-K4 methylation activity is conferred by the ALL-1 SET domain. Chromatin immunoprecipitations show that ALL-1 and other complex components examined are bound at the promoter of an active ALL-1-dependent Hox a9 gene. In parallel, H3-K4 is methylated, and histones H3 and H4 are acetylated at this promoter.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase , Metiltransferases/química , Proto-Oncogenes , Fatores de Transcrição , Transcrição Gênica , Western Blotting , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Células HeLa , Histona Metiltransferases , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Espectrometria de Massas , Metilação , Metiltransferases/metabolismo , Proteína de Leucina Linfoide-Mieloide , Testes de Precipitina , Ligação Proteica , Proteínas Metiltransferases , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA