Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G3-G15, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37874654

RESUMO

Concentrated animal feeding operations (CAFOs) are responsible for the production of global greenhouse gases and harmful environmental pollutants including hydrogen sulfide, ammonia, and particulate matter. Swine farmers are frequently exposed to organic dust that is proinflammatory in the lung and are thus at greater risk of developing pneumonia, asthma, and other respiratory conditions. In addition to respiratory disease, air pollutants are directly associated with altered gastrointestinal (GI) physiology and the development of GI diseases, thereby highlighting the gut-lung axis in disease progression. Instillation of hog dust extract (HDE) for 3 wk has been reported to promote the development of chronic airway inflammation in mice, however, the impact of HDE exposure on intestinal homeostasis is poorly understood. We report that 3-wk intranasal exposure of HDE is associated with increased intestinal macromolecule permeability and elevated serum endotoxin concentrations in C57BL/6J mice. In vivo studies also indicated mislocalization of the epithelial cell adhesion protein, E-cadherin, in the colon as well as an increase in the proinflammatory cytokine, Tnfα, in the proximal colon. Moreover, mRNA expression of the Paneth cell-associated marker, Lyz1, was increased the proximal colon, whereas the expression of the goblet cell marker, Muc2, was unchanged in the epithelial cells of the ileum, cecum, and distal colon. These results demonstrate that airway exposure to CAFOs dusts promote airway inflammation and modify the gastrointestinal tract to increase intestinal permeability, induce systemic endotoxemia, and promote intestinal inflammation. Therefore, this study identifies complex physiological consequences of chronic exposure to organic dusts derived from CAFOs on the gut-lung axis.NEW & NOTEWORTHY Agricultural workers have a higher prevalence of occupational respiratory symptoms and are at greater risk of developing respiratory diseases. However, gastrointestinal complications have also been reported, yet the intestinal pathophysiology is understudied. This work is novel because it emphasizes the role of an inhaled environmental pollutant on the development of intestinal pathophysiological outcomes. This work will provide foundation for other studies evaluating how agricultural dusts disrupts host physiology and promotes debilitating gastrointestinal and systemic disorders.


Assuntos
Poeira , Endotoxemia , Camundongos , Animais , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Inflamação
2.
Cell Mol Gastroenterol Hepatol ; 16(1): 39-62, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030630

RESUMO

BACKGROUND & AIMS: Loss-of-function variants in the PTPN2 gene are associated with increased risk of inflammatory bowel disease. We recently showed that Ptpn2 is critical for intestinal epithelial cell (IEC) barrier maintenance, IEC-macrophage communication, and modulation of the gut microbiome in mice, restricting expansion of a small intestinal pathobiont associated with inflammatory bowel disease. Here, we aimed to identify how Ptpn2 loss affects ileal IEC subtypes and their function in vivo. METHODS: Constitutive Ptpn2 wild-type, heterozygous, and knockout (KO) mice, as well as mice with inducible deletion of Ptpn2 in IECs, were used in the study. Investigation was performed using imaging techniques, flow cytometry, enteroid culture, and analysis of gene and protein levels of IEC markers. RESULTS: Partial transcriptome analysis showed that expression of Paneth cell-associated antimicrobial peptides Lyz1, Pla2g2a, and Defa6 was down-regulated markedly in Ptpn2-KO mice compared with wild-type and heterozygous. In parallel, Paneth cell numbers were reduced, their endoplasmic reticulum architecture was disrupted, and the endoplasmic reticulum stress protein, C/EBP-homologous protein (CHOP), was increased in Ptpn2-KO mice. Despite reduced Paneth cell number, flow cytometry showed increased expression of the Paneth cell-stimulatory cytokines interleukin 22 and interferon γ+ in CD4+ T cells isolated from Ptpn2-KO ileum. Key findings in constitutive Ptpn2-KO mice were confirmed in epithelium-specific Ptpn2ΔIEC mice, which also showed impaired lysozyme protein levels in Paneth cells compared with Ptpn2fl/fl control mice. CONCLUSIONS: Constitutive Ptpn2 deficiency affects Paneth cell viability and compromises Paneth cell-specific antimicrobial peptide production. The observed effects may contribute to the increased susceptibility to intestinal infection and dysbiosis in these mice.


Assuntos
Doenças Inflamatórias Intestinais , Celulas de Paneth , Camundongos , Animais , Celulas de Paneth/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Sobrevivência Celular , Doenças Inflamatórias Intestinais/genética , Íleo/metabolismo , Camundongos Knockout
3.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810248

RESUMO

Macrophages intimately interact with intestinal epithelial cells, but the consequences of defective macrophage-epithelial cell interactions for protection against enteric pathogens are poorly understood. Here, we show that in mice with a deletion in protein tyrosine phosphatase nonreceptor type 2 (PTPN2) in macrophages, infection with Citrobacter rodentium, a model of enteropathogenic and enterohemorrhagic E. coli infection in humans, promoted a strong type 1/IL-22-driven immune response, culminating in accelerated disease but also faster clearance of the pathogen. In contrast, deletion of PTPN2 specifically in epithelial cells rendered the epithelium unable to upregulate antimicrobial peptides and consequently resulted in a failure to eliminate the infection. The ability of PTPN2-deficient macrophages to induce faster recovery from C. rodentium was dependent on macrophage-intrinsic IL-22 production, which was highly increased in macrophages deficient in PTPN2. Our findings demonstrate the importance of macrophage-mediated factors, and especially macrophage-derived IL-22, for the induction of protective immune responses in the intestinal epithelium, and show that normal PTPN2 expression in the epithelium is crucial to allow for protection against enterohemorrhagic E. coli and other intestinal pathogens.


Assuntos
Infecções por Enterobacteriaceae , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Animais , Humanos , Camundongos , Células Epiteliais/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo
4.
Gut ; 71(1): 89-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33563644

RESUMO

OBJECTIVES: Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN: IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS: Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS: Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
5.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623320

RESUMO

Genome-wide association studies revealed that loss-of-function mutations in protein tyrosine phosphatase non-receptor type 2 (PTPN2) increase the risk of developing chronic immune diseases, such as inflammatory bowel disease (IBD) and celiac disease. These conditions are associated with increased intestinal permeability as an early etiological event. The aim of this study was to examine the consequences of deficient activity of the PTPN2 gene product, T cell protein tyrosine phosphatase (TCPTP), on intestinal barrier function and tight junction organization in vivo and in vitro. Here, we demonstrate that TCPTP protected against intestinal barrier dysfunction induced by the inflammatory cytokine IFN-γ by 2 mechanisms: it maintained localization of zonula occludens 1 and occludin at apical tight junctions and restricted both expression and insertion of the cation pore-forming transmembrane protein, claudin-2, at tight junctions through upregulation of the inhibitory cysteine protease, matriptase. We also confirmed that the loss-of-function PTPN2 rs1893217 SNP was associated with increased intestinal claudin-2 expression in patients with IBD. Moreover, elevated claudin-2 levels and paracellular electrolyte flux in TCPTP-deficient intestinal epithelial cells were normalized by recombinant matriptase. Our findings uncover distinct and critical roles for epithelial TCPTP in preserving intestinal barrier integrity, thereby proposing a mechanism by which PTPN2 mutations contribute to IBD.


Assuntos
Mucosa Intestinal/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Junções Íntimas/metabolismo , Adolescente , Adulto , Idoso , Animais , Claudinas/metabolismo , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Permeabilidade , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Junções Íntimas/patologia , Adulto Jovem
6.
J Crohns Colitis ; 15(3): 471-484, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32909045

RESUMO

BACKGROUND AND AIMS: Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. METHODS: Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. RESULTS: Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. CONCLUSIONS: PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.


Assuntos
Células Epiteliais/enzimologia , Mucosa Intestinal/enzimologia , Inibidores de Janus Quinases/farmacologia , Macrófagos/enzimologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Animais , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Modelos Animais de Doenças , Células Epiteliais/imunologia , Humanos , Interleucina-6/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/fisiologia , Fator de Transcrição STAT3/fisiologia , Transdução de Sinais , Interleucina 22
7.
Gastroenterology ; 159(5): 1763-1777.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652144

RESUMO

BACKGROUND & AIMS: The mechanisms by which macrophages regulate intestinal epithelial cell (IEC) barrier properties are poorly understood. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) protects the IEC barrier from inflammation-induced disruption and regulates macrophage functions. We investigated whether PTPN2 controls interactions between IECs and macrophages to maintain intestinal barrier function. METHODS: Human IEC (Caco-2BBe/HT-29.cl19a cells) and mouse enteroid monolayers were cocultured with human macrophages (THP-1, U937, primary monocyte-derived macrophages from patients with inflammatory bowel disease [IBD]) or mouse macrophages, respectively. We assessed barrier function (transepithelial electrical resistance [TEER] and permeability to 4-kDa fluorescently labeled dextran or 70-kDa rhodamine B-dextran) and macrophage polarization. We analyzed intestinal tissues from mice with myeloid cell-specific deletion of PTPN2 (Ptpn2-LysMCre mice) and mice without disruption of Ptpn2 (controls); some mice were given injections of a neutralizing antibody against interleukin (IL) 6. Proteins were knocked down in macrophages and/or IECs with small hairpin RNAs. RESULTS: Knockdown of PTPN2 in either macrophages and/or IECs increased the permeability of IEC monolayers, had a synergistic effect when knocked down from both cell types, and increased the development of inflammatory macrophages in macrophage-IEC cocultures. Colon lamina propria from Ptpn2-LysMCre mice had significant increases in inflammatory macrophages; these mice had increased in vivo and ex vivo colon permeability to 4-kDa fluorescently labeled dextran and reduced ex vivo colon TEER. Nanostring analysis showed significant increases in the expression of IL6 in colon macrophages from Ptpn2-LysMCre mice. An IL6-blocking antibody reversed the effects of PTPN2-deficient macrophages, reducing the permeability of IEC monolayers in culture and in Ptpn2-LysMCre mice. Macrophages from patients with IBD carrying a single-nucleotide polymorphism associated with the disease (PTPN2 rs1893217) had the same features of PTPN2-deficient macrophages from mice, including reduced TEER and increased permeability in cocultures with human IEC or mouse enteroid monolayers, which were restored by anti-IL6. CONCLUSIONS: PTPN2 is required for interactions between macrophages and IECs; loss of PTPN2 from either cell type results in intestinal barrier defects, and loss from both cell types has a synergistic effect. We provide a mechanism by which the PTPN2 gene variants compromise intestinal epithelial barrier function and increase the risk of inflammatory disorders such as IBD.


Assuntos
Comunicação Celular , Células Epiteliais/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Absorção Intestinal , Mucosa Intestinal/enzimologia , Macrófagos/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Adulto , Células CACO-2 , Técnicas de Cocultura , Células Epiteliais/imunologia , Feminino , Humanos , Imunidade Inata , Imunidade nas Mucosas , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Transdução de Sinais , Células THP-1 , Células U937
8.
Gut Microbes ; 11(6): 1547-1566, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32586195

RESUMO

Inflammatory bowel disease (IBD) pathogenesis involves significant contributions from genetic and environmental factors. Loss-of-function single-nucleotide polymorphisms (SNPs) in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene increase IBD risk and are associated with altered microbiome population dynamics in IBD. Expansion of intestinal pathobionts, such as adherent-invasive E. coli (AIEC), is strongly implicated in IBD pathogenesis as AIEC increases pro-inflammatory cytokine production and alters tight junction protein regulation - suggesting a potential mechanism of pathogen-induced barrier dysfunction and inflammation. We aimed to determine if PTPN2 deficiency alters intestinal microbiome composition to promote expansion of specific bacteria with pathogenic properties. In mice constitutively lacking Ptpn2, we identified increased abundance of a novel mouse AIEC (mAIEC) that showed similar adherence and invasion of intestinal epithelial cells, but greater survival in macrophages, to the IBD-associated AIEC, LF82. Furthermore, mAIEC caused disease when administered to mice lacking segmented-filamentous bacteria (SFB), and in germ-free mice but only when reconstituted with a microbiome, thus supporting its classification as a pathobiont, not a pathogen. Moreover, mAIEC infection increased the severity of, and prevented recovery from, induced colitis. Although mAIEC genome sequence analysis showed >90% similarity to LF82, mAIEC contained putative virulence genes with >50% difference in gene/protein identities from LF82 indicating potentially distinct genetic features of mAIEC. We show for the first time that an IBD susceptibility gene, PTPN2, modulates the gut microbiome to protect against a novel pathobiont. This study generates new insights into gene-environment-microbiome interactions in IBD and identifies a new model to study AIEC-host interactions.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Feminino , Microbioma Gastrointestinal , Predisposição Genética para Doença , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA