Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352339

RESUMO

Auditory neural coding of speech-relevant temporal cues can be noninvasively probed using envelope following responses (EFRs), neural ensemble responses phase-locked to the stimulus amplitude envelope. EFRs emphasize different neural generators, such as the auditory brainstem or auditory cortex, by altering the temporal modulation rate of the stimulus. EFRs can be an important diagnostic tool to assess auditory neural coding deficits that go beyond traditional audiometric estimations. Existing approaches to measure EFRs use discrete amplitude modulated (AM) tones of varying modulation frequencies, which is time consuming and inefficient, impeding clinical translation. Here we present a faster and more efficient framework to measure EFRs across a range of AM frequencies using stimuli that dynamically vary in modulation rates, combined with spectrally specific analyses that offer optimal spectrotemporal resolution. EFRs obtained from several species (humans, Mongolian gerbils, Fischer-344 rats, and Cba/CaJ mice) showed robust, high-SNR tracking of dynamic AM trajectories (up to 800Hz in humans, and 1.4 kHz in rodents), with a fivefold decrease in recording time and thirtyfold increase in spectrotemporal resolution. EFR amplitudes between dynamic AM stimuli and traditional discrete AM tokens within the same subjects were highly correlated (94% variance explained) across species. Hence, we establish a time-efficient and spectrally specific approach to measure EFRs. These results could yield novel clinical diagnostics for precision audiology approaches by enabling rapid, objective assessment of temporal processing along the entire auditory neuraxis.

2.
Sci Rep ; 13(1): 13636, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604867

RESUMO

Hearing thresholds form the gold standard assessment in Audiology clinics. However, ~ 10% of adult patients seeking audiological care for self-perceived hearing deficits have thresholds that are normal. Currently, a diagnostic assessment for auditory processing disorder (APD) remains one of the few viable avenues of further care for this patient population, yet there are no standard guidelines for referrals. Here, we identified tests within the APD testing battery that could provide a rapid screener to inform APD referrals in adults. We first analyzed records from the University of Pittsburgh Medical Center (UPMC) Audiology database to identify adult patients with self-perceived hearing difficulties despite normal audiometric thresholds. We then looked at the patients who were referred for APD testing. We examined test performances, correlational relationships, and classification accuracies. Patients experienced most difficulties within the dichotic domain of testing. Additionally, accuracies calculated from sensitivities and specificities revealed the words-in-noise (WIN), the Random Dichotic Digits Task (RDDT) and Quick Speech in Noise (QuickSIN) tests had the highest classification accuracies. The addition of these tests have the greatest promise as a quick screener during routine audiological assessments to help identify adult patients who may be referred for APD assessment and resulting treatment plans.


Assuntos
Audiologia , Transtornos da Percepção Auditiva , Humanos , Adulto , Transtornos da Percepção Auditiva/diagnóstico , Instituições de Assistência Ambulatorial , Bases de Dados Factuais , Encaminhamento e Consulta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA