Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 112: 103463, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36796908

RESUMO

Small heat shock proteins (sHSPs) play important roles in insect development and stress resistance. However, the in vivo functions and mechanisms of action remain largely unknown or unclear for most members of the sHSPs in insects. This study investigated the expression of CfHSP20.2 in the spruce budworm, Choristoneura fumiferana (Clem.) under normal and heat-stress conditions. Under normal conditions, CfHSP20.2 transcript and protein were highly and constantly expressed in the testes of male larvae, pupae and young adults and in the ovaries of female late-stage pupae and adults. After adult eclosion, CfHSP20.2 remained highly and almost constantly expressed in the ovaries, but in contrast, was downregulated in the testes. Upon heat stress, CfHSP20.2 was upregulated in the gonads and non-gonadal tissues in both sexes. These results indicate that CfHSP20.2 expression is gonad-specific and heat-inducible. This provides evidence that the CfHSP20.2 protein plays important roles during reproductive development under normal environmental conditions, while under heat-stress conditions, it may also enhance the thermal tolerance of the gonads and non-gonadal tissues.


Assuntos
Proteínas de Choque Térmico Pequenas , Mariposas , Animais , Feminino , Masculino , Proteínas de Choque Térmico Pequenas/genética , Mariposas/genética , Larva/genética , Pupa
2.
J Therm Biol ; 88: 102493, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32125981

RESUMO

Heat shock proteins (HSPs) greatly contribute to insect stress tolerance and enhance survival and adaptation in severe environmental conditions. To investigate the potential roles of HSPs in the spruce budworm, Choristoneura fumiferana (L.), an important native pest of forests in North America, we found eight ATP-dependent HSP transcripts (CfHSPs). Based on molecular characteristics, the identified HSP genes were classified into HSP70 and HSP90 families, and phylogenetic results showed that they had orthologues in other insects. The transcript levels of these HSPs were measured using RT-qPCR under normal and stressful conditions in the laboratory. Under normal conditions, three HSP genes were consistently expressed in all life stages, whereas expression of the other five genes was dependent on the developmental stage. In the larvae, most CfHSP transcripts displayed similar expression levels among different tissues. Under heat shock conditions, one HSP70 gene and one HSP90 gene were upregulated in all life stages. One HSP70 gene was upregulated after cold injury in the larval stage. With starvation, HSP gene expression exhibited complex expression patterns; most of them were downregulated. These results suggest that the ATP-dependent HSPs have multiple roles during normal development as well as under stressful conditions including heat, cold injury and starvation.


Assuntos
Resposta ao Choque Frio/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética , Resposta ao Choque Térmico/genética , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Mariposas/genética , Inanição/genética , Trifosfato de Adenosina , Animais , Feminino , Larva , Masculino , Filogenia , Pupa , Transcriptoma , Zigoto
3.
Insect Sci ; 26(2): 182-198, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29082661

RESUMO

Plant-insect interactions are key model systems to assess how some species affect the distribution, the abundance, and the evolution of others. Tree reproductive structures represent a critical resource for many insect species, which can be likely drivers of demography, spatial distribution, and trait diversification of plants. In this review, we present the ecological implications of predispersal herbivory on tree reproductive structures by insects (PIHR) in forest ecosystems. Both insect's and tree's perspectives are addressed with an emphasis on how spatiotemporal variation and unpredictability in seed availability can shape such particular plant-animal interactions. Reproductive structure insects show strong trophic specialization and guild diversification. Insects evolved host selection and spatiotemporal dispersal strategies in response to variable and unpredictable abundance of reproductive structures in both space and time. If PIHR patterns have been well documented in numerous systems, evidences of the subsequent demographic and evolutionary impacts on tree populations are still constrained by time-scale challenges of experimenting on such long-lived organisms, and modeling approaches of tree dynamics rarely consider PIHR when including biotic interactions in their processes. We suggest that spatially explicit and mechanistic approaches of the interactions between individual tree fecundity and insect dynamics will clarify predictions of the demogenetic implications of PIHR in tree populations. In a global change context, further experimental and theoretical contributions to the likelihood of life-cycle disruptions between plants and their specialized herbivores, and to how these changes may generate novel dynamic patterns in each partner of the interaction are increasingly critical.


Assuntos
Florestas , Herbivoria , Insetos , Sementes/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Adaptação Biológica , Distribuição Animal , Animais , Evolução Biológica
4.
Cell Stress Chaperones ; 23(6): 1247-1256, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120691

RESUMO

Diapause is an important strategy for certain insect species to survive unfavorable environmental conditions, including low temperatures experienced when they overwinter in cold climate. Many studies have indicated that the increased expression of heat shock proteins during diapause improves the thermal tolerance of insects. However, the relationship between small heat shock proteins (sHSPs) and diapause is not clear or well-researched. In this study, we investigated the transcript levels of 14 sHSP genes in the spruce budworm, Choristoneura fumiferana, a major pest of spruce and fir in Canada, during pre-diapause, diapause, and post-diapause under normal rearing conditions and in response to a heat shock treatment. We found that sHSP expression profiles could be classified into five patterns under normal laboratory conditions: pattern I was upregulated only during pre-diapause, pattern II was upregulated only during diapause, pattern III was constantly expressed throughout diapause, pattern IV was upregulated in both pre-diapause and diapause, and pattern V was upregulated only during post-diapause. After heat shock, five different expression patterns were observed: pattern I responded weakly or not at all throughout diapause, pattern II responded weakly during the diapause stage but strongly at the onset of diapause and in the post-diapause period, pattern III was upregulated only during post-diapause, pattern IV was strongest during diapause, and pattern V was strongest only in early diapause. These complex expression profiles lead us to suggest that most of the sHSP genes are involved in the diapause process and that they may have multiple and important roles in different phases of this process.


Assuntos
Diapausa/genética , Proteínas de Choque Térmico Pequenas/genética , Resposta ao Choque Térmico/genética , Proteínas de Insetos/genética , Mariposas/crescimento & desenvolvimento , Mariposas/genética , Animais , Larva/genética , Larva/crescimento & desenvolvimento , Transcrição Gênica
5.
PLoS One ; 10(10): e0139634, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441311

RESUMO

Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida/fisiologia , Sementes/parasitologia , Traqueófitas/parasitologia , Animais , Oviposição/fisiologia , Simbiose , Vespas
6.
Ecol Evol ; 4(24): 4609-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558356

RESUMO

Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local-scale wind data and a regional-scale wind-dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long-distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional-scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long-distance dispersal of this invasive seed wasp. This result confirms that long-distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.

7.
PLoS One ; 8(8): e70818, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936470

RESUMO

Many animal species experiencing spatial or interannual fluctuations of their environment are capable of prolonged diapause, a kind of dormancy that extends over more than one year. Such a prolonged diapause is commonly perceived as a temporal demographic refuge in stochastic environments, but empirical evidence is still lacking of its consequences on temporal population genetic structures. In this long-term study, we investigated how a particular pattern of prolonged diapause may influence the temporal population genetics of the invasive seed-specialized wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in southeastern France. We characterized the diapause strategy of M. schimitscheki using records of emergence from diapause in 97 larval cohorts, and we conducted a temporal population genetic study on a natural invasive wasp population sampled during ten consecutive years (1999-2008) using polymorphic microsatellite markers. We found that M. schimitscheki can undergo a prolonged diapause of up to five years and displays two main adult emergence peaks after two and four years of diapause. Such a bimodal and atypical pattern did not disrupt temporal gene flow between cohorts produced in even and in odd years during the period of the study. Unexpectedly, we found that this wasp population consisted of two distinct genetic sub-populations that strongly diverged in their diapause strategies, with very few admixed individuals. One of the sub-populations displayed both short and prolonged diapause (2 and 4 years respectively) in equal proportions, whereas the other sub-population displayed mainly short diapause. This study provided empirical evidence that prolonged diapause phenotypes can substantially contribute to reproduction and impact temporal genetic structures. Prolonged diapause is likely to act as both demographic and genetic refuges for insect populations living in fluctuating environments.


Assuntos
Fluxo Gênico , Genética Populacional , Metamorfose Biológica , Dinâmica Populacional , Vespas/genética , Animais , Repetições de Microssatélites/genética , Fenótipo
8.
Naturwissenschaften ; 91(10): 472-80, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15729760

RESUMO

Insects are considered the most important predators of seed cones, the female reproductive structures of conifers, prior to seed dispersal. Slightly more than 100 genera of insects are known to parasitize conifer seed cones. The most diverse (i.e., number of species) of these genera is Megastigmus (Hymenoptera: Torymidae), which comprises many important seed pests of native and exotic conifers. Seed chalcids, Megastigmus spp., lay eggs inside the developing ovules of host conifers and, until recently, oviposition was believed to occur only in fertilized ovules. Ovule development begins just after pollination, but stops if cells are not fertilized. The morphological stage of cone development at the time of oviposition by seed chalcids has been established for many species; however, knowledge of ovule development at that time has been documented for only one species, M. spermotrophus. Megastigmus spermotrophus oviposits in Douglas-fir ovules after pollination but before fertilization. Unlike the unfertilized ovules, those containing a M. spermotrophus larva continue to develop, whether fertilized or not, stressing the need to broaden our understanding of the insect-plant interactions for this entire genus. To achieve this task, we reviewed the scientific literature and assembled information pertaining to the timing of oviposition and to the pollination and fertilization periods of their respective host(s). More specifically, we were searching for circumstantial evidence that other species of Megastigmus associated with conifers could behave (i.e., oviposit before ovule fertilization) and impact on female gametophyte (i.e., prevent abortion) like M. spermotrophus. The evidence from our compilation suggests that seed chalcids infesting Pinaceae may also oviposit before ovule fertilization, just like M. spermotrophus, whereas those infesting Cupressaceae seemingly oviposit after ovule fertilization. Based on this evidence, we hypothesize that all species of Megastigmus associated with Pinaceae can oviposit in unfertilized ovules, whereas those exploiting Cupressaceae cannot, and thus oviposit only in already fully developed fertilized seeds. Furthermore, we predict that the presence of a larva in unfertilized ovules of all Pinaceae will influence the development of the female gametophyte by preventing its abortion. This influence on the Pinaceae can be interpreted as an ability to parasitize any of the potential seeds present in a seed cone, and as such represents a much more efficient oviposition strategy than searching and locating only fertilized seeds. Concomitantly, this ability has likely led to an overestimation of the impact of the species of seed chalcid infesting Pinaceae on seed production.


Assuntos
Insetos/fisiologia , Oviposição/fisiologia , Sementes/parasitologia , Traqueófitas/parasitologia , Animais , Feminino , Interações Hospedeiro-Parasita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA