Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(11): 5776-5791, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29373715

RESUMO

More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.


Assuntos
Processamento Pós-Transcricional do RNA , Vírus de RNA/genética , RNA Viral/metabolismo , Linhagem Celular Tumoral , Citosina/metabolismo , RNA Helicases DEAD-box/fisiologia , Humanos , Proteínas Proto-Oncogênicas/fisiologia , Vírus de RNA/metabolismo , RNA Viral/química , Estresse Fisiológico/genética
2.
PLoS One ; 9(3): e93108, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24667334

RESUMO

AIDS is a global pandemic that has seen the development of novel and effective treatments to improve the quality of life of those infected and reduction of spread of the disease. Palmitic Acid (PA), which we identified and isolated from Sargassum fusiforme, is a naturally occurring fatty acid that specifically inhibits HIV entry by binding to a novel pocket on the CD4 receptor. We also identified a structural analogue, 2-bromopalmitate (2-BP), as a more effective HIV entry inhibitor with a 20-fold increase in efficacy. We have used the structure-activity relationship (SAR) of 2-BP as a platform to identify new small chemical molecules that fit into the various identified active sites in an effort to identify more potent CD4 entry inhibitors. To validate further drug development, we tested the PA and 2-BP scaffold molecules for genotoxic potential. The FDA and International Conference on Harmonisation (ICH) recommends using a standardized 3-test battery for testing compound genotoxicity consisting of the bacterial reverse mutation assay, mouse lymphoma assay, and rat micronucleus assay. PA and 2-BP and their metabolites tested negative in all three genotoxicty tests. 2-BP is the first derivative of PA to undergo pre-clinical screening, which will enable us to now test multiple simultaneous small chemical structures based on activity in scaffold modeling across the dimension of pre-clinical testing to enable transition to human testing.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/toxicidade , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/toxicidade , HIV/efeitos dos fármacos , HIV/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Produtos Biológicos/farmacologia , Descoberta de Drogas , Feminino , Inibidores da Fusão de HIV/farmacologia , Linfoma/patologia , Masculino , Camundongos , Testes para Micronúcleos , Palmitatos/química , Palmitatos/farmacologia , Palmitatos/toxicidade , Ácido Palmítico/química , Ácido Palmítico/farmacologia , Ácido Palmítico/toxicidade , Ratos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Relação Estrutura-Atividade
3.
PLoS One ; 6(9): e24803, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949756

RESUMO

BACKGROUND: Approximately 80% of all new HIV-1 infections are acquired through sexual contact. Currently, there is no clinically approved microbicide, indicating a clear and urgent therapeutic need. We recently reported that palmitic acid (PA) is a novel and specific inhibitor of HIV-1 fusion and entry. Mechanistically, PA inhibits HIV-1 infection by binding to a novel pocket on the CD4 receptor and blocks efficient gp120-to-CD4 attachment. Here, we wanted to assess the ability of PA to inhibit HIV-1 infection in cervical tissue ex vivo model of human vagina, and determine its effect on Lactobacillus (L) species of probiotic vaginal flora. PRINCIPAL FINDINGS: Our results show that treatment with 100-200 µM PA inhibited HIV-1 infection in cervical tissue by up to 50%, and this treatment was not toxic to the tissue or to L. crispatus and jensenii species of vaginal flora. In vitro, in a cell free system that is independent of in vivo cell associated CD4 receptor; we determined inhibition constant (Ki) to be ∼2.53 µM. SIGNIFICANCE: These results demonstrate utility of PA as a model molecule for further preclinical development of a safe and potent HIV-1 entry microbicide inhibitor.


Assuntos
Anti-Infecciosos/farmacologia , Colo do Útero/virologia , Descoberta de Drogas , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Ácido Palmítico/farmacologia , Vagina/virologia , Antígenos CD4/metabolismo , Colo do Útero/efeitos dos fármacos , Feminino , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Humanos , Lactobacillus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Biológicos , Ácido Palmítico/uso terapêutico , Vagina/efeitos dos fármacos
4.
PLoS One ; 5(8): e12168, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20730055

RESUMO

BACKGROUND: We recently reported that palmitic acid (PA) is a novel and efficient CD4 fusion inhibitor to HIV-1 entry and infection. In the present report, based on in silico modeling of the novel CD4 pocket that binds PA, we describe discovery of highly potent PA analogs with increased CD4 receptor binding affinities (K(d)) and gp120-to-CD4 inhibition constants (K(i)). The PA analogs were selected to satisfy Lipinski's rule of drug-likeness, increased solubility, and to avoid potential cytotoxicity. PRINCIPAL FINDINGS: PA analog 2-bromopalmitate (2-BP) was most efficacious with K(d) approximately 74 nM and K(i) approximately 122 nM, ascorbyl palmitate (6-AP) exhibited slightly higher K(d) approximately 140 nM and K(i) approximately 354 nM, and sucrose palmitate (SP) was least efficacious binding to CD4 with K(d) approximately 364 nM and inhibiting gp120-to-CD4 binding with K(i) approximately 1486 nM. Importantly, PA and its analogs specifically bound to the CD4 receptor with the one to one stoichiometry. SIGNIFICANCE: Considering observed differences between K(i) and K(d) values indicates clear and rational direction for improving inhibition efficacy to HIV-1 entry and infection. Taken together this report introduces a novel class of natural small molecules fusion inhibitors with nanomolar efficacy of CD4 receptor binding and inhibition of HIV-1 entry.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1 , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Antígenos CD4/química , Proteína gp120 do Envelope de HIV/química , Inibidores da Fusão de HIV/química , Inibidores da Fusão de HIV/metabolismo , Inibidores da Fusão de HIV/farmacologia , Modelos Moleculares , Ácido Palmítico/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica
5.
AIDS Res Hum Retroviruses ; 25(12): 1231-41, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20001317

RESUMO

The high rate of HIV-1 mutation and the frequent sexual transmission highlight the need for novel therapeutic modalities with broad activity against both CXCR4 (X4) and CCR5 (R5)-tropic viruses. We investigated a large number of natural products, and from Sargassum fusiforme we isolated and identified palmitic acid (PA) as a natural small bioactive molecule with activity against HIV-1 infection. Treatment with 100 microM PA inhibited both X4 and R5 independent infection in the T cell line up to 70%. Treatment with 22 microM PA inhibited X4 infection in primary peripheral blood lymphocytes (PBL) up to 95% and 100 microM PA inhibited R5 infection in primary macrophages by over 90%. Inhibition of infection was concentration dependent, and cell viability for all treatments tested remained above 80%, similar to treatment with 10(-6)M nucleoside analogue 2', 3'-dideoxycytidine (ddC). Micromolar PA concentrations also inhibited cell-to-cell fusion and specific virus-to-cell fusion up to 62%. PA treatment did not result in internalization of the cell surface CD4 receptor or lipid raft disruption, and it did not inhibit intracellular virus replication. PA directly inhibited gp120-CD4 complex formation in a dose-dependent manner. We used fluorescence spectroscopy to determine that PA binds to the CD4 receptor with K(d) approximately 1.5 +/- 0.2 microM, and we used one-dimensional saturation transfer difference NMR (STD-NMR) to determined that the PA binding epitope for CD4 consists of the hydrophobic methyl and methelene groups located away from the PA carboxyl terminal, which blocks efficient gp120-CD4 attachment. These findings introduce a novel class of antiviral compound that binds directly to the CD4 receptor, blocking HIV-1 entry and infection. Understanding the structure-affinity relationship (SAR) between PA and CD4 should lead to the development of PA analogs with greater potency against HIV-1 entry.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , Ácido Palmítico/farmacologia , Antígenos CD4/efeitos dos fármacos , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Células Cultivadas , Inibidores Enzimáticos/química , Inibidores da Fusão de HIV/química , Infecções por HIV/virologia , HIV-1/metabolismo , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Ácido Palmítico/química , Receptores CCR5/efeitos dos fármacos , Receptores CCR5/metabolismo , Receptores CXCR4/efeitos dos fármacos , Receptores CXCR4/metabolismo , Sargassum/química , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
6.
Virology ; 380(2): 173-81, 2008 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-18768194

RESUMO

In this study we provide evidence that the transcription factor BCL11B represses expression from the HIV-1 long terminal repeat (LTR) in T lymphocytes through direct association with the HIV-1 LTR. We also demonstrate that the NuRD corepressor complex mediates BCL11B transcriptional repression of the HIV-1 LTR. In addition, BCL11B and the NuRD complex repressed TAT-mediated transactivation of the HIV-1 LTR in T lymphocytes, pointing to a potential role in initiation of silencing. In support of all the above results, we demonstrate that BCL11B affects HIV-1 replication and virus production, most likely by blocking LTR transcriptional activity. BCL11B showed specific repression for the HIV-1 LTR sequences isolated from seven different HIV-1 subtypes, demonstrating that it is a general transcriptional repressor for all LTRs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia , Proteínas Supressoras de Tumor/metabolismo , Fusão Gênica Artificial , Linhagem Celular , Genes Reporter , Humanos , Luciferases/biossíntese , Luciferases/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Ligação Proteica , Replicação Viral , Produtos do Gene tat do Vírus da Imunodeficiência Humana/antagonistas & inibidores
7.
Virol J ; 5: 8, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18197976

RESUMO

Sargassum fusiforme (Harvey) Setchell has been shown to be a highly effective inhibitor of HIV-1 infection. To identify its mechanism of action, we performed bioactivity-guided fractionation on Sargassum fusiforme mixture. Here, we report isolation of a bioactive fraction SP4-2 (S. fusiforme), which at 8 mug/ml inhibited HIV-1 infection by 86.9%, with IC50 value of 3.7 mug. That represents 230-fold enhancement of antiretroviral potency as compared to the whole extract. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5) tropic HIV-1. Specifically, 10 mug/ml SP4-2 blocked HIV-1 fusion and entry by 53%. This effect was reversed by interaction of SP4-2 with sCD4, suggesting that S. fusiforme inhibits HIV-1 infection by blocking CD4 receptor, which also explained observed inhibition of both X4 and R5-tropic HIV-1. SP4-2 also inhibited HIV-1 replication after virus entry, by directly inhibiting HIV-1 reverse transcriptase (RT) in a dose dependent manner by up to 79%. We conclude that the SP4-2 fraction contains at least two distinct and biologically active molecules, one that inhibits HIV-1 fusion by interacting with CD4 receptor, and another that directly inhibits HIV-1 RT. We propose that S. fusiforme is a lead candidate for anti-HIV-1 drug development.


Assuntos
Produtos Biológicos/farmacologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Sargassum , Fármacos Anti-HIV/farmacologia , Antígenos CD4/efeitos dos fármacos , Antígenos CD4/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Infecções por HIV/metabolismo , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/fisiologia , Humanos , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Receptores Virais/metabolismo , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
AIDS Res Ther ; 3: 15, 2006 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-16725040

RESUMO

BACKGROUND: The high rate of HIV-1 mutation and increasing resistance to currently available antiretroviral (ART) therapies highlight the need for new antiviral agents. Products derived from natural sources have been shown to inhibit HIV-1 replication during various stages of the virus life cycle, and therefore represent a potential source of novel therapeutic agents. To expand our arsenal of therapeutics against HIV-1 infection, we investigated aqueous extract from Sargassum fusiforme (S. fusiforme) for ability to inhibit HIV-1 infection in the periphery, in T cells and human macrophages, and for ability to inhibit in the central nervous system (CNS), in microglia and astrocytes. RESULTS: S. fusiforme extract blocked HIV-1 infection and replication by over 90% in T cells, human macrophages and microglia, and it also inhibited pseudotyped HIV-1 (VSV/NL4-3) infection in human astrocytes by over 70%. Inhibition was mediated against both CXCR4 (X4) and CCR5 (R5)-tropic HIV-1, was dose dependant and long lasting, did not inhibit cell growth or viability, was not toxic to cells, and was comparable to inhibition by the nucleoside analogue 2', 3'-didoxycytidine (ddC). S. fusiforme treatment blocked direct cell-to-cell infection spread. To investigate at which point of the virus life cycle this inhibition occurs, we infected T cells and CD4-negative primary human astrocytes with HIV-1 pseudotyped with envelope glycoprotein of vesicular stomatitis virus (VSV), which bypasses the HIV receptor requirements. Infection by pseudotyped HIV-1 (VSV/NL4-3) was also inhibited in a dose dependant manner, although up to 57% less, as compared to inhibition of native NL4-3, indicating post-entry interferences. CONCLUSION: This is the first report demonstrating S. fusiforme to be a potent inhibitor of highly productive HIV-1 infection and replication in T cells, in primary human macrophages, microglia, and astrocytes. Results with VSV/NL4-3 infection, suggest inhibition of both entry and post-entry events of the virus life cycle. Absence of cytotoxicity and high viability of treated cells also suggest that S. fusiforme is a potential source of novel naturally occurring antiretroviral compounds that inhibit HIV-1 infection and replication at more than one site of the virus life cycle.

9.
J Neurovirol ; 10 Suppl 1: 25-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14982736

RESUMO

Neurodegeneration and dementia caused by human immunodeficiency virus type 1 (HIV-1) infection of the brain are common complications of acquired immunodeficiency syndrome (AIDS). Introduction of highly active antiretroviral therapy (HAART) reduced the incidence of HIV-1-associated dementia, but so far had no effect on the high frequency of milder neurological disorders caused by HIV-1. This indicates that some neuropathogenic processes persist during limited HIV-1 replication in the central nervous system (CNS). The authors are evaluating the hypothesis that interaction of HIV-1 with astrocytes, which bind HIV-1 but support limited productive HIV-1 infection, may contribute to these processes by disrupting astrocyte functions that are important for neuronal activity or survival. Using laser-capture microdissection on brain tissue samples from HIV-1-infected individuals, we found that HIV-1 DNA can be detected in up to 1% of cortical and basal ganglia astrocytes, thus confirming HIV-1 infection in astrocytes from symptomatic patients. Using rapid subtraction hybridization, the authors cloned and identified 25 messenger RNAs in primary human fetal astrocytes either up-regulated or down-regulated by native HIV-1 infection or exposure to gp120 in vitro. Extending this approach to gene microarray analysis using Affymetrix U133A/B gene chips, the authors determined that HIV-1 alters globally and significantly the overall program of gene expression in astrocytes, including changes in transcripts coding for cytokines, G-coupled protein receptors, transcription factors, and others. Focusing on a specific astrocyte function relevant to neuropathogenesis, the authors showed that exposure of astrocytes to HIV-1 or gp120 in vitro impairs the ability of the cells to transport L-glutamate and the authors related this defect to transcriptional inhibition of the EAAT2 glutamate transporter gene. These findings define new pathways through which HIV-1 may contribute to neuropathogenesis under conditions of limited virus replication in the brain.


Assuntos
Complexo AIDS Demência/etiologia , Complexo AIDS Demência/fisiopatologia , Astrócitos/fisiologia , Astrócitos/virologia , HIV-1 , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA