Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 37(17-18): 781-800, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37798016

RESUMO

Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Tecido Adiposo , Obesidade , Células Estromais
2.
Nat Metab ; 4(1): 13-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027769
3.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088848

RESUMO

Homeothermic vertebrates produce heat in cold environments through thermogenesis, in which brown adipose tissue (BAT) increases mitochondrial oxidation along with uncoupling of the electron transport chain and activation of uncoupling protein 1 (UCP1). Although the transcription factors regulating the expression of UCP1 and nutrient oxidation genes have been extensively studied, only a few other proteins essential for BAT function have been identified. We describe the discovery of FAM195A, a BAT-enriched RNA binding protein, which is required for cold-dependent thermogenesis in mice. FAM195A knockout (KO) mice display whitening of BAT and an inability to thermoregulate. In BAT of FAM195A KO mice, enzymes involved in branched-chain amino acid (BCAA) metabolism are down-regulated, impairing their response to cold. Knockdown of FAM195A in brown adipocytes in vitro also impairs expression of leucine oxidation enzymes, revealing FAM195A to be a regulator of BCAA metabolism and a potential target for metabolic disorders.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Temperatura Baixa , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Termogênese , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Linhagem Celular Transformada , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout
4.
Nat Commun ; 8: 16077, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28681861

RESUMO

Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.


Assuntos
Proteínas de Membrana/genética , Síndrome de Möbius/genética , Morfogênese/genética , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Mutação , Mioblastos/metabolismo , Síndrome de Pierre Robin/genética , Proteínas de Peixe-Zebra/genética , Adulto , Sequência de Aminoácidos , Animais , Fusão Celular , Criança , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Expressão Gênica , Genes Recessivos , Teste de Complementação Genética , Humanos , Lactente , Masculino , Proteínas de Membrana/deficiência , Síndrome de Möbius/metabolismo , Síndrome de Möbius/patologia , Proteínas Musculares/deficiência , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mioblastos/patologia , Linhagem , Síndrome de Pierre Robin/metabolismo , Síndrome de Pierre Robin/patologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência
5.
Science ; 356(6335): 323-327, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28386024

RESUMO

Skeletal muscle formation occurs through fusion of myoblasts to form multinucleated myofibers. From a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) loss-of-function screen for genes required for myoblast fusion and myogenesis, we discovered an 84-amino acid muscle-specific peptide that we call Myomixer. Myomixer expression coincides with myoblast differentiation and is essential for fusion and skeletal muscle formation during embryogenesis. Myomixer localizes to the plasma membrane, where it promotes myoblast fusion and associates with Myomaker, a fusogenic membrane protein. Myomixer together with Myomaker can also induce fibroblast-fibroblast fusion and fibroblast-myoblast fusion. We conclude that the Myomixer-Myomaker pair controls the critical step in myofiber formation during muscle development.


Assuntos
Fusão Celular , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Masculino , Camundongos Knockout , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(31): E4494-503, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27418600

RESUMO

Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Síndrome de Emaciação/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Denervação Muscular , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Síndrome de Emaciação/metabolismo
7.
J Physiol ; 593(24): 5361-85, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26369674

RESUMO

KEY POINTS: It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention. Our findings support the hypotheses that the specific force of muscle fibres decreased following unilateral lower limb suspension (ULLS) and returned to normal after 3 weeks of active recovery as a result of a loss and recovery of myosin and actin content. Furthermore, muscle fibres went through extensive qualitative changes in muscle protein pattern following ULLS, and these were reversed by active recovery. Resistance training was very effective in restoring both muscle mass and qualitative muscle changes, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. ABSTRACT: Following disuse, muscle fibre function goes through adaptations such as a loss of specific force (PO /CSA) and an increase in unloaded shortening velocity, which could be a result of both quantitative changes (i.e. atrophy) and qualitative changes in protein pattern. The underlying mechanisms remain to be clarified. In addition, little is known about the recovery of muscle mass and strength following disuse. In the present study, we report an extensive dataset describing, in detail,the functional and protein content adaptations of skeletal muscle in response to both disuse and re-training. Eight young healthy subjects were subjected to 3 weeks of unilateral lower limb suspension (ULLS), a widely used human model of disuse skeletal muscle atrophy. Needle biopsies samples were taken from the vastus lateralis muscle Pre-ULLS, Post-ULLS and after 3 weeks of recovery during which heavy resistance training was performed. After disuse, cross-sectional area (CSA), PO /CSA and myosin concentration (MC) decreased in both type 1 and 2A skinned muscle fibres. After recovery, CSA and MC returned to levels comparable to those observed before disuse, whereas Po/CSA and unloaded shortening velocity reached a higher level. Myosin heavy chain isoform composition of muscle samples did not differ among the experimental groups. To study the mechanisms underlying such adaptations, a two-dimensional proteomic analysis was performed. ULLS induced a reduction of myofibrillar, metabolic (glycolytic and oxidative) and anti-oxidant defence system protein content. Resistance training was very effective in counteracting ULLS-induced alterations, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo , Treinamento Resistido , Actinas/metabolismo , Adolescente , Adulto , Humanos , Perna (Membro)/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/terapia , Miosinas/metabolismo , Recuperação de Função Fisiológica , Restrição Física/efeitos adversos
8.
J Physiol ; 593(8): 1981-95, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25565653

RESUMO

KEY POINTS: Skeletal muscle atrophy occurs as a result of disuse. Although several studies have established that a decrease in protein synthesis and increase in protein degradation lead to muscle atrophy, little is known about the triggers underlying such processes. A growing body of evidence challenges oxidative stress as a trigger of disuse atrophy; furthermore, it is also becoming evident that mitochondrial dysfunction may play a causative role in determining muscle atrophy. Mitochondrial fusion and fission have emerged as important processes that govern mitochondrial function and PGC-1α may regulate fusion/fission events. Although most studies on mice have focused on the anti-gravitary slow soleus muscle as it is preferentially affected by disuse atrophy, several fast muscles (including gastrocnemius) go through a significant loss of mass following unloading. Here we found that in fast muscles an early down-regulation of pro-fusion proteins, through concomitant AMP-activated protein kinase (AMPK) activation, can activate catabolic systems, and ultimately cause muscle mass loss in disuse. Elevated muscle PGC-1α completely preserves muscle mass by preventing the fall in pro-fusion protein expression, AMPK and catabolic system activation, suggesting that compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy. ABSTRACT: The mechanisms triggering disuse muscle atrophy remain of debate. It is becoming evident that mitochondrial dysfunction may regulate pathways controlling muscle mass. We have recently shown that mitochondrial dysfunction plays a major role in disuse atrophy of soleus, a slow, oxidative muscle. Here we tested the hypothesis that hindlimb unloading-induced atrophy could be due to mitochondrial dysfunction in fast muscles too, notwithstanding their much lower mitochondrial content. Gastrocnemius displayed atrophy following both 3 and 7 days of unloading. SOD1 and catalase up-regulation, no H2 O2 accumulation and no increase of protein carbonylation suggest the antioxidant defence system efficiently reacted to redox imbalance in the early phases of disuse. A defective mitochondrial fusion (Mfn1, Mfn2 and OPA1 down-regulation) occurred together with an impairment of OXPHOS capacity. Furthermore, at 3 days of unloading higher acetyl-CoA carboxylase (ACC) phosphorylation was found, suggesting AMP-activated protein kinase (AMPK) pathway activation. To test the role of mitochondrial alterations we used Tg-mice overexpressing PGC-1α because of the known effect of PGC-1α on stimulation of Mfn2 expression. PGC-α overexpression was sufficient to prevent (i) the decrease of pro-fusion proteins (Mfn1, Mfn2 and OPA1), (ii) activation of the AMPK pathway, (iii) the inducible expression of MuRF1 and atrogin1 and of authopagic factors, and (iv) any muscle mass loss in response to disuse. As the effects of increased PGC-1α activity were sustained throughout disuse, compounds inducing PGC-1α expression could be useful to treat and prevent muscle atrophy also in fast muscles.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Dinâmica Mitocondrial/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação , Fatores de Transcrição/genética , Regulação para Cima
9.
J Physiol ; 592(20): 4575-89, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128574

RESUMO

Prolonged skeletal muscle inactivity causes muscle fibre atrophy. Redox imbalance has been considered one of the major triggers of skeletal muscle disuse atrophy, but whether redox imbalance is actually the major cause or simply a consequence of muscle disuse remains of debate. Here we hypothesized that a metabolic stress mediated by PGC-1α down-regulation plays a major role in disuse atrophy. First we studied the adaptations of soleus to mice hindlimb unloading (HU) in the early phase of disuse (3 and 7 days of HU) with and without antioxidant treatment (trolox). HU caused a reduction in cross-sectional area, redox status alteration (NRF2, SOD1 and catalase up-regulation), and induction of the ubiquitin proteasome system (MuRF-1 and atrogin-1 mRNA up-regulation) and autophagy (Beclin1 and p62 mRNA up-regulation). Trolox completely prevented the induction of NRF2, SOD1 and catalase mRNAs, but not atrophy or induction of catabolic systems in unloaded muscles, suggesting that oxidative stress is not a major cause of disuse atrophy. HU mice showed a marked alteration of oxidative metabolism. PGC-1α and mitochondrial complexes were down-regulated and DRP1 was up-regulated. To define the link between mitochondrial dysfunction and disuse muscle atrophy we unloaded mice overexpressing PGC-1α. Transgenic PGC-1α animals did not show metabolic alteration during unloading, preserving muscle size through the reduction of autophagy and proteasome degradation. Our results indicate that mitochondrial dysfunction plays a major role in disuse atrophy and that compounds inducing PGC-1α expression could be useful to treat/prevent muscle atrophy.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo , Fatores de Transcrição/metabolismo , Regulação para Cima , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Proteína Beclina-1 , Catalase/genética , Catalase/metabolismo , Cromanos/farmacologia , Cromanos/uso terapêutico , Dinaminas/genética , Dinaminas/metabolismo , Elevação dos Membros Posteriores/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/prevenção & controle , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
J Physiol ; 590(20): 5211-30, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22848045

RESUMO

In order to get a comprehensive picture of the complex adaptations of human skeletal muscle to disuse and further the understanding of the underlying mechanisms, we participated in two bed rest campaigns, one lasting 35 days and one 24 days. In the first bed rest (BR) campaign, myofibrillar proteins, metabolic enzymes and antioxidant defence systems were found to be down-regulated both post-8 days and post-35 days BR by proteomic analysis of vastus lateralis muscle samples from nine subjects. Such profound alterations occurred early (post-8 days BR), before disuse atrophy developed, and persisted through BR (post-35 days BR). To understand the mechanisms underlying the protein adaptations observed, muscle biopsies from the second bed rest campaign (nine subjects) were used to evaluate the adaptations of master controllers of the balance between muscle protein breakdown and muscle protein synthesis (MuRF-1 and atrogin-1; Akt and p70S6K), of autophagy (Beclin-1, p62, LC3, bnip3, cathepsin-L), of expression of antioxidant defence systems (NRF2) and of energy metabolism (PGC-1α, SREBP-1, AMPK). The results indicate that: (i) redox imbalance and remodelling of muscle proteome occur early and persist through BR; (ii) impaired energy metabolism is an early and persistent phenomenon comprising both the oxidative and glycolytic one; (iii) although both major catabolic systems, ubiquitin proteasome and autophagy, could contribute to the progression of atrophy late into BR, a decreased protein synthesis cannot be ruled out; (iv) a decreased PGC-1α, with the concurrence of SREBP-1 up-regulation, is a likely trigger of metabolic impairment, whereas the AMPK pathway is unaltered.


Assuntos
Repouso em Cama , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/metabolismo , Adulto , Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Músculo Esquelético/anatomia & histologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteoma , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA