Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 29(8): 1816-1828, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557944

RESUMO

Addressing molecular recognition in the context of evolution requires pursuing new molecular targets to enable the development of agonists or antagonists with new mechanisms of action. Disruption of transcriptional regulation through targeting transcription factors that regulate the expression of key enzymes in bacterial metabolism may provide a promising method for controlling the bacterial metabolic pathways. To this end, we have selectively targeted a bacterial transcription regulator through the design and synthesis of a series of γ-aminobutyric acid (GABA) derivatives, including (S)-4-amino-5-phenoxypentanoate (4-phenoxymethyl-GABA), which are based on docking insights gained from a previously-solved crystal structure of GabR from Bacillus subtilis. This target was selected because GabR strictly controls GABA metabolism by regulating the transcription of the gabT/D operon. These GabR transcription modulators are selective for the bacterial transcription factor GabR and are unable to bind to structural homologs of GabR due to distinct steric constraints. We have obtained a crystal structure of 4-phenoxymethyl-GABA bound as an external aldimine with PLP in the effector binding site of GabR, which suggests that this compound is capable of binding and reacting in the same manner as the native effector ligand. Inhibition assays demonstrate high selectivity of 4-phenoxymethyl-GABA for bacterial GabR versus several selected eukaryotic enzymes. Single-molecule fluorescence resonance energy transfer (smFRET) experiments reveal a ligand-induced DNA distortion that is very similar to that of the native effector GABA, suggesting that the compound functions as a potential selective agonist of GabR.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Fatores de Transcrição/agonistas , Fatores de Transcrição/química , Valeratos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Óperon , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
2.
Biophys Chem ; 245: 25-33, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30551070

RESUMO

Three-way helical junctions (3WJs) arise in genetic processing, and they have architectural and functional roles in structured nucleic acids. An internal bulge at the junction core allows the helical domains to become oriented into two possible, coaxially stacked conformers. Here, the helical stacking arrangements for a series of bulged, DNA 3WJs were examined using ensemble fluorescence resonance energy transfer (FRET) and single-molecule FRET (smFRET) approaches. The 3WJs varied according to the GC content and sequence of the junction core as well as the pyrimidine content of the internal bulge. Mg2+ titration experiments by ensemble FRET show that both stacking conformations have similar Mg2+ requirements for folding. Strikingly, smFRET experiments reveal that a specific junction sequence can populate both conformers and that this junction undergoes continual interconversion between the two stacked conformers. These findings will support the development of folding principles for the rational design of functional DNA nanostructures.


Assuntos
DNA/química , Transferência Ressonante de Energia de Fluorescência/métodos , Magnésio/química , Conformação de Ácido Nucleico , Microscopia de Fluorescência , Pirimidinas/química
3.
J Phys Chem B ; 122(50): 11841-11851, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30441902

RESUMO

Repetitive trinucleotide DNA sequences at specific genetic loci are associated with numerous hereditary, neurodegenerative diseases. The propensity of single-stranded domains containing these sequences to form secondary structure via extensive self-complementarity disrupts normal DNA processing to create genetic instabilities. To investigate these intrastrand structural dynamics, a DNA hairpin system was devised for single-molecule fluorescence study of the folding kinetics and energetics for secondary structure formation between two interacting, repetitive domains with specific numbers of the same trinucleotide motif (CXG), where X = T or A. Single-molecule fluorescence resonance energy transfer (smFRET) data show discrete conformational transitions between unstructured and closed hairpin states. The lifetimes of the closed hairpin states correlate with the number of repeats, with (CTG) N/(CTG) N domains maintaining longer-lived, closed states than equivalent-sized (CAG) N/(CAG) N domains. NaCl promotes similar degree of stabilization for the closed hairpin states of both repeat sequences. Temperature-based, smFRET experiments reveal that NaCl favors hairpin closing for (CAG) N/(CAG) N by preordering single-stranded repeat domains to accelerate the closing transition. In contrast, NaCl slows the opening transition of CTG hairpins; however, it promotes misfolded conformations that require unfolding. Energy diagrams illustrate the distinct folding pathways of (CTG) N and (CAG) N repeat domains and identify features that may contribute to their gene-destabilizing effects.


Assuntos
DNA/química , Termodinâmica , Cátions/química , Conformação de Ácido Nucleico , Repetições de Trinucleotídeos
4.
Biochemistry ; 56(49): 6448-6459, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29141138

RESUMO

Internal loops within structured nucleic acids disrupt local base stacking and destabilize neighboring helical domains; however, these structural motifs also expand the conformational and functional capabilities of structured nucleic acids. Variations in the size, distribution of loop nucleotides on opposing strands (strand asymmetry), and sequence alter their biophysical properties. Here, the thermodynamics and structural flexibility of oligo-T-rich DNA internal loops were systematically investigated in terms of loop size and strand asymmetry. From optical melting experiments, a thermodynamic prediction model is proposed for the energetic penalty of internal loops that accounts for diminishing enthalpic and increasing entropic contributions due to loop size and strand asymmetry for bulges, asymmetric loops, and symmetric loops. These single-stranded domains become less sequence-dependent and more polymeric as the loop size increases. Single-molecule fluorescence resonance energy transfer studies reveal a gradual transition in conformation and structural flexibility from an elongated domain to an increasingly flexible bend that results from increasing strand asymmetry. The findings provide a framework for understanding the thermodynamic and conformational effects of internal loops for the rational design of functional DNA nanostructures.


Assuntos
DNA/química , Biofísica , Entropia , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , Termodinâmica
5.
J Biol Chem ; 290(37): 22734-46, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26209636

RESUMO

Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg(2+) dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation.


Assuntos
DNA Cruciforme/química , Conformação de Ácido Nucleico , Oligopeptídeos/química , DNA Cruciforme/metabolismo , Transferência Ressonante de Energia de Fluorescência , Oligopeptídeos/metabolismo
6.
PLoS Biol ; 12(10): e1001981, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25350280

RESUMO

DEAD-box helicase proteins accelerate folding and rearrangements of highly structured RNAs and RNA-protein complexes (RNPs) in many essential cellular processes. Although DEAD-box proteins have been shown to use ATP to unwind short RNA helices, it is not known how they disrupt RNA tertiary structure. Here, we use single molecule fluorescence to show that the DEAD-box protein CYT-19 disrupts tertiary structure in a group I intron using a helix capture mechanism. CYT-19 binds to a helix within the structured RNA only after the helix spontaneously loses its tertiary contacts, and then CYT-19 uses ATP to unwind the helix, liberating the product strands. Ded1, a multifunctional yeast DEAD-box protein, gives analogous results with small but reproducible differences that may reflect its in vivo roles. The requirement for spontaneous dynamics likely targets DEAD-box proteins toward less stable RNA structures, which are likely to experience greater dynamic fluctuations, and provides a satisfying explanation for previous correlations between RNA stability and CYT-19 unfolding efficiency. Biologically, the ability to sense RNA stability probably biases DEAD-box proteins to act preferentially on less stable misfolded structures and thereby to promote native folding while minimizing spurious interactions with stable, natively folded RNAs. In addition, this straightforward mechanism for RNA remodeling does not require any specific structural environment of the helicase core and is likely to be relevant for DEAD-box proteins that promote RNA rearrangements of RNP complexes including the spliceosome and ribosome.


Assuntos
RNA Helicases DEAD-box/metabolismo , Tetrahymena thermophila/metabolismo , Transferência Ressonante de Energia de Fluorescência , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Catalítico/metabolismo
7.
J Mol Biol ; 426(4): 793-815, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24286749

RESUMO

Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.


Assuntos
DNA Nucleotidiltransferases/metabolismo , DNA/química , DNA/genética , Recombinação Genética , DNA Nucleotidiltransferases/genética , DNA Super-Helicoidal/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Biologia Molecular/métodos , Conformação de Ácido Nucleico , Transposon Resolvases/genética , Transposon Resolvases/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(47): 18868-73, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24191051

RESUMO

The Mre11/Rad50/Nbs1 (MRN) complex initiates and coordinates DNA repair and signaling events at double-strand breaks. The interaction between MRN and DNA ends is critical for the recruitment of DNA-processing enzymes, end tethering, and activation of the ATM protein kinase. Here we visualized MRN binding to duplex DNA molecules using single-molecule FRET, and found that MRN unwinds 15-20 base pairs at the end of the duplex, holding the branched structure open for minutes at a time in an ATP-dependent reaction. A Rad50 catalytic domain mutant that is specifically deficient in this ATP-dependent opening is impaired in DNA end resection in vitro and in resection-dependent repair of breaks in human cells, demonstrating the importance of MRN-generated single strands in the repair of DNA breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA/fisiologia , Transferência Ressonante de Energia de Fluorescência/métodos , Complexos Multiproteicos/metabolismo , Hidrolases Anidrido Ácido , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo
9.
Mol Biotechnol ; 53(1): 19-28, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22311273

RESUMO

Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGG( N ), N = 23) and expanded CGG repeat lengths (CGG( N ), N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders.


Assuntos
DNA/química , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Microscopia de Fluorescência/métodos , Expansão das Repetições de Trinucleotídeos , DNA/isolamento & purificação , Fluorescência , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Heterozigoto , Humanos , Mutação
10.
Anal Biochem ; 431(1): 40-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22929698

RESUMO

Single-molecule fluorescence methods offer the promise of ultrasensitive detection of biomolecules, but the passive immobilization methods commonly employed require analyte concentrations in the picomolar range. Here, we demonstrate that superparamagnetic Fe(3)O(4) nanoparticles (NPs) can be used with an external magnetic field as a simple strategy to enhance the immobilization efficiency and thereby decrease the detection limit. Inorganic NPs functionalized with streptavidin were bound to biotinylated single-stranded DNA oligonucleotides, which were in turn annealed to complementary oligonucleotides labeled with a Cy3 fluorescent dye. Using an external magnetic field, the superparamagnetic nanoparticles were localized to a specific region within the flow chamber surface. From the single-molecule fluorescence time traces, single-step photobleaching indicated that the surface-immobilized NPs were primarily bound with a single Cy3-labeled oligonucleotide. This strategy gave a concentration detection limit for the Cy3-labeled oligonucleotide of 100aM, 3000-fold lower than that from an analogous strategy with passive immobilization. With a sample volume of 25µl, this method achieved a mole detection limit of approximately 2.5zmol (∼1500 molecules). Together, the results support that idea that single-molecule fluorescence methods could be used for biological applications such as detection and measurements of nucleic acids from biological or clinical samples without polymerase chain reaction amplification.


Assuntos
Carbocianinas/química , DNA/análise , Corantes Fluorescentes/química , Nanopartículas de Magnetita/química , Microscopia de Fluorescência , Óxido Ferroso-Férrico/química , Ácidos Nucleicos Imobilizados , Campos Magnéticos , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Fotodegradação , Estreptavidina/química , Estreptavidina/metabolismo , Propriedades de Superfície
11.
Proc Natl Acad Sci U S A ; 108(13): 5260-5, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21389271

RESUMO

Internal ionizable groups in proteins are relatively rare but they are essential for catalysis and energy transduction. To examine molecular determinants of their unusual and functionally important properties, we engineered 25 variants of staphylococcal nuclease with lysine residues at internal positions. Nineteen of the Lys residues have depressed pK(a) values, some as low as 5.3, and 20 titrate without triggering any detectable conformational reorganization. Apparently, simply by being buried in the protein interior, these Lys residues acquired pK(a) values comparable to those of naturally occurring internal ionizable groups involved in catalysis and biological H(+) transport. The pK(a) values of some of the internal Lys residues were affected by interactions with surface carboxylic groups. The apparent polarizability reported by the pK(a) values varied significantly from location to location inside the protein. These data will enable an unprecedented examination of the positional dependence of the dielectric response of a protein. This study also shows that the ability of proteins to withstand the presence of charges in their hydrophobic interior is a fundamental property inherent to all stable proteins, not a specialized adaptation unique to proteins that evolved to depend on internal charges for function.


Assuntos
Íons/química , Lisina/química , Nuclease do Micrococo/química , Estabilidade Enzimática , Nuclease do Micrococo/genética , Nuclease do Micrococo/metabolismo , Modelos Moleculares , Conformação Proteica , Termodinâmica
12.
Am J Physiol Cell Physiol ; 300(5): C998-C1012, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21289290

RESUMO

In vitro, calmodulin (CaM) and S100A1 activate the skeletal muscle ryanodine receptor ion channel (RyR1) at submicromolar Ca(2+) concentrations, whereas at micromolar Ca(2+) concentrations, CaM inhibits RyR1. One amino acid substitution (RyR1-L3625D) has previously been demonstrated to impair CaM binding and regulation of RyR1. Here we show that the RyR1-L3625D substitution also abolishes S100A1 binding. To determine the physiological relevance of these findings, mutant mice were generated with the RyR1-L3625D substitution in exon 74, which encodes the CaM and S100A1 binding domain of RyR1. Homozygous mutant mice (Ryr1(D/D)) were viable and appeared normal. However, single RyR1 channel recordings from Ryr1(D/D) mice exhibited impaired activation by CaM and S100A1 and impaired CaCaM inhibition. Isolated flexor digitorum brevis muscle fibers from Ryr1(D/D) mice had depressed Ca(2+) transients when stimulated by a single action potential. However, during repetitive stimulation, the mutant fibers demonstrated greater relative summation of the Ca(2+) transients. Consistently, in vivo stimulation of tibialis anterior muscles in Ryr1(D/D) mice demonstrated reduced twitch force in response to a single action potential, but greater summation of force during high-frequency stimulation. During repetitive stimulation, Ryr1(D/D) fibers exhibited slowed inactivation of sarcoplasmic reticulum Ca(2+) release flux, consistent with increased summation of the Ca(2+) transient and contractile force. Peak Ca(2+) release flux was suppressed at all voltages in voltage-clamped Ryr1(D/D) fibers. The results suggest that the RyR1-L3625D mutation removes both an early activating effect of S100A1 and CaM and delayed suppressing effect of CaCaM on RyR1 Ca(2+) release, providing new insights into CaM and S100A1 regulation of skeletal muscle excitation-contraction coupling.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas S100/metabolismo , Retículo Sarcoplasmático/metabolismo , Potenciais de Ação/fisiologia , Animais , Cálcio/fisiologia , Calmodulina/fisiologia , Feminino , Masculino , Camundongos , Contração Muscular/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Ligação Proteica , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Proteínas S100/fisiologia , Retículo Sarcoplasmático/fisiologia
13.
14.
Proc Natl Acad Sci U S A ; 107(37): 16096-100, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20798341

RESUMO

Charges are inherently incompatible with hydrophobic environments. Presumably for this reason, ionizable residues are usually excluded from the hydrophobic interior of proteins and are found instead at the surface, where they can interact with bulk water. Paradoxically, ionizable groups buried in the hydrophobic interior of proteins play essential roles, especially in biological energy transduction. To examine the unusual properties of internal ionizable groups we measured the pK(a) of glutamic acid residues at 25 internal positions in a stable form of staphylococcal nuclease. Two of 25 Glu residues titrated with normal pK(a) near 4.5; the other 23 titrated with elevated pK(a) values ranging from 5.2-9.4, with an average value of 7.7. Trp fluorescence and far-UV circular dichroism were used to monitor the effects of internal charges on conformation. These data demonstrate that although charges buried in proteins are indeed destabilizing, charged side chains can be buried readily in the hydrophobic core of stable proteins without the need for specialized structural adaptations to stabilize them, and without inducing any major conformational reorganization. The apparent dielectric effect experienced by the internal charges is considerably higher than the low dielectric constants of hydrophobic matter used to represent the protein interior in electrostatic continuum models of proteins. The high thermodynamic stability required for proteins to withstand the presence of buried charges suggests a pathway for the evolution of enzymes, and it underscores the need to mind thermodynamic stability in any strategy for engineering novel or altered enzymatic active sites in proteins.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nuclease do Micrococo/química , Staphylococcus/enzimologia , Dicroísmo Circular , Estabilidade Enzimática , Modelos Moleculares , Estrutura Terciária de Proteína , Termodinâmica
15.
J Phys Chem B ; 114(31): 10105-13, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20684633

RESUMO

Fluorescence and infrared spectroscopy and cholesterol oxidase activity were employed to investigate the effect of phosphatidylcholine (PC) acyl chain length mismatch on the lateral organizations of lipids in liquid-ordered dipalmitoyl-PC/dilauroyl-PC/cholesterol (DPPC/DLPC/CHOL) bilayers. Plots of steady-state fluorescence emission anisotropy of diphenylhexatriene (DPH) labeled PC (DPH-PC) embedded in the DPPC/DLPC/CHOL bilayers revealed significant peaks at several DPPC mole fractions (Y(DPPC)) when the cholesterol mole fraction (X(CHOL)) was fixed to particular values. Analogously, the DPH-PC anisotropy peaked at several critical X(CHOL)'s when Y(DPPC) was fixed. Acyl chain C-H and C horizontal lineO vibrational peak frequencies of native PC as well as the activity of cholesterol oxidase also revealed dips and peaks at similar Y(DPPC)'s. Importantly, most of the observed peaks/dips coincide with the critical mole fractions predicted by the Superlattice (SL) model. A three-dimensional map of DPH-PC anisotropy versus composition in the range 0.32

Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Colesterol/metabolismo , Colesterol Oxidase/metabolismo , Polarização de Fluorescência , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Mol Cell Biol ; 30(11): 2724-36, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20351179

RESUMO

S100 proteins comprise a multigene family of EF-hand calcium binding proteins that engage in multiple functions in response to cellular stress. In one case, the S100B protein has been implicated in oligodendrocyte progenitor cell (OPC) regeneration in response to demyelinating insult. In this example, we report that the mitochondrial ATAD3A protein is a major, high-affinity, and calcium-dependent S100B target protein in OPC. In OPC, ATAD3A is required for cell growth and differentiation. Molecular characterization of the S100B binding domain on ATAD3A by nuclear magnetic resonance (NMR) spectroscopy techniques defined a consensus calcium-dependent S100B binding motif. This S100B binding motif is conserved in several other S100B target proteins, including the p53 protein. Cellular studies using a truncated ATAD3A mutant that is deficient for mitochondrial import revealed that S100B prevents cytoplasmic ATAD3A mutant aggregation and restored its mitochondrial localization. With these results in mind, we propose that S100B could assist the newly synthesized ATAD3A protein, which harbors the consensus S100B binding domain for proper folding and subcellular localization. Such a function for S100B might also help to explain the rescue of nuclear translocation and activation of the temperature-sensitive p53val135 mutant by S100B at nonpermissive temperatures.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas S100/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Proteínas de Membrana , Proteínas Mitocondriais , Dados de Sequência Molecular , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/genética , Ressonância Magnética Nuclear Biomolecular , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/química , Proteínas S100/genética , Alinhamento de Sequência , Células-Tronco/citologia , Células-Tronco/fisiologia
17.
Curr Chem Biol ; 3(2): 138-145, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19890475

RESUMO

S100A1 is a member of the S100 family of calcium-binding proteins. As with most S100 proteins, S100A1 undergoes a large conformational change upon binding calcium as necessary to interact with numerous protein targets. Targets of S100A1 include proteins involved in calcium signaling (ryanidine receptors 1 & 2, Serca2a, phopholamban), neurotransmitter release (synapsins I & II), cytoskeletal and filament associated proteins (CapZ, microtubules, intermediate filaments, tau, mocrofilaments, desmin, tubulin, F-actin, titin, and the glial fibrillary acidic protein GFAP), transcription factors and their regulators (e.g. myoD, p53), enzymes (e.g. aldolase, phosphoglucomutase, malate dehydrogenase, glycogen phosphorylase, photoreceptor guanyl cyclases, adenylate cyclases, glyceraldehydes-3-phosphate dehydrogenase, twitchin kinase, Ndr kinase, and F1 ATP synthase), and other Ca2+-activated proteins (annexins V & VI, S100B, S100A4, S100P, and other S100 proteins). There is also a growing interest in developing inhibitors of S100A1 since they may be beneficial for treating a variety of human diseases including neurological diseases, diabetes mellitus, heart failure, and several types of cancer. The absence of significant phenotypes in S100A1 knockout mice provides some early indication that an S100A1 antagonist could have minimal side effects in normal tissues. However, development of S100A1-mediated therapies is complicated by S100A1's unusual ability to function as both an intracellular signaling molecule and as a secreted protein. Additionally, many S100A1 protein targets have only recently been identified, and so fully characterizing both these S100A1-target complexes and their resulting functions is a necessary prerequisite.

18.
J Mol Biol ; 386(5): 1265-77, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19452629

RESUMO

As is typical for S100-target protein interactions, a Ca 2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca 2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca 2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca 2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca 2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.


Assuntos
Modelos Moleculares , Oligopeptídeos/química , Proteínas S100/química , Sítios de Ligação , Cálcio/metabolismo , Proteína de Capeamento de Actina CapZ , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas S100/metabolismo
19.
J Mol Biol ; 389(1): 34-47, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19324049

RESUMO

The pK(a) values of internal ionizable groups are usually very different from the normal pK(a) values of ionizable groups in water. To examine the molecular determinants of pK(a) values of internal groups, we compared the properties of Lys, Asp, and Glu at internal position 38 in staphylococcal nuclease. Lys38 titrates with a normal or elevated pK(a), whereas Asp38 and Glu38 titrate with elevated pK(a) values of 7.0 and 7.2, respectively. In the structure of the L38K variant, the buried amino group of the Lys38 side chain makes an ion pair with Glu122, whereas in the structure of the L38E variant, the buried carboxyl group of Glu38 interacts with two backbone amides and has several nearby carboxyl oxygen atoms. Previously, we showed that the pK(a) of Lys38 is normal owing to structural reorganization and water penetration concomitant with ionization of the Lys side chain. In contrast, the pK(a) values of Asp38 and Glu38 are perturbed significantly owing to an imbalance between favorable polar interactions and unfavorable contributions from dehydration and from Coulomb interactions with surface carboxylic groups. Their ionization is also coupled to subtle structural reorganization. These results illustrate the complex interplay between local polarity, Coulomb interactions, and structural reorganization as determinants of pK(a) values of internal groups in proteins. This study suggests that improvements to computational methods for pK(a) calculations will require explicit treatment of the conformational reorganization that can occur when internal groups ionize.


Assuntos
Aminoácidos Acídicos/química , Aminoácidos Básicos/química , Nuclease do Micrococo/química , Substituição de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/química , Estrutura Secundária de Proteína , Análise Espectral , Propriedades de Superfície , Titulometria
20.
Proc Natl Acad Sci U S A ; 105(46): 17784-8, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19004768

RESUMO

Internal ionizable groups are quite rare in water-soluble globular proteins. Presumably, this reflects the incompatibility between charges and the hydrophobic environment in the protein interior. Here we show that proteins can have an inherently high tolerance for internal ionizable groups. The 25 internal positions in staphylococcal nuclease were substituted one at a time with Lys, Glu, or Asp without abolishing enzymatic activity and without detectable changes in the conformation of the protein. Similar results with substitutions of 6 randomly chosen internal positions in ribonuclease H with Lys and Glu suggest that the ability of proteins to tolerate internal ionizable groups might be a property common to many proteins. Eighty-six of the 87 substitutions made were destabilizing, but in all but one case the proteins remained in the native state at neutral pH. By comparing the stability of each variant protein at two different pH values it was established that the pK(a) values of most of the internal ionizable groups are shifted; many of the internal ionizable groups are probably neutral at physiological pH values. These studies demonstrate that special structural adaptations are not needed for ionizable groups to exist stably in the hydrophobic interior of proteins. The studies suggest that enzymes and other proteins that use internal ionizable groups for functional purposes could have evolved through the random accumulation of mutations that introduced ionizable groups at internal positions, followed by evolutionary adaptation and optimization to modulate stability, dynamics, and other factors necessary for function.


Assuntos
Aminoácidos/química , Nuclease do Micrococo/química , Ribonuclease H/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons , Modelos Moleculares , Proteínas Mutantes/química , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA