Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 107(7): 2039-2053, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36428260

RESUMO

Brown root rot disease (BRRD), caused by Phellinus noxius, is an important tree disease in tropical and subtropical areas. To improve chemical control of BRRD and deter emergence of fungicide resistance in P. noxius, this study investigated control efficacies and systemic activities of fungicides with different modes of action. Fourteen fungicides with 11 different modes of action were tested for inhibitory effects in vitro on 39 P. noxius isolates from Taiwan, Hong Kong, Malaysia, Australia, and Pacific Islands. Cyproconazole, epoxiconazole, and tebuconazole (Fungicide Resistance Action Committee [FRAC] 3, target-site G1) inhibited colony growth of P. noxius by 99.9 to 100% at 10 ppm and 97.7 to 99.8% at 1 ppm. The other effective fungicide was cyprodinil + fludioxonil (FRAC 9 + 12, target-site D1 + E2), which showed growth inhibition of 96.9% at 10 ppm and 88.6% at 1 ppm. Acropetal translocation of six selected fungicides was evaluated in bishop wood (Bischofia javanica) seedlings by immersion of the root tips in each fungicide at 100 ppm, followed by liquid or gas chromatography tandem mass spectrometry analyses of consecutive segments of root, stem, and leaf tissues at 7 and 21 days posttreatment. Bidirectional translocation of the fungicides was also evaluated by stem injection of fungicide stock solutions. Cyproconazole and tebuconazole were the most readily absorbed by roots and efficiently transported acropetally. Greenhouse experiments suggested that cyproconazole, tebuconazole, and epoxiconazole have a slightly higher potential for controlling BRRD than mepronil, prochloraz, and cyprodinil + fludioxonil. Because all tested fungicides lacked basipetal translocation, soil drenching should be considered instead of trunk injection for their use in BRRD control.


Assuntos
Basidiomycota , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Compostos de Epóxi
2.
BMC Genomics ; 21(1): 764, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148175

RESUMO

BACKGROUND: Development and application of DNA-based methods to distinguish highly virulent isolates of Fusarium oxysporum f. sp. koae [Fo koae; cause of koa wilt disease on Acacia koa (koa)] will help disease management through early detection, enhanced monitoring, and improved disease resistance-breeding programs. RESULTS: This study presents whole genome analyses of one highly virulent Fo koae isolate and one non-pathogenic F. oxysporum (Fo) isolate. These analyses allowed for the identification of putative lineage-specific DNA and predicted genes necessary for disease development on koa. Using putative chromosomes and predicted gene comparisons, Fo koae-exclusive, virulence genes were identified. The putative lineage-specific DNA included identified genes encoding products secreted in xylem (e. g., SIX1 and SIX6) that may be necessary for disease development on koa. Unique genes from Fo koae were used to develop pathogen-specific PCR primers. These diagnostic primers allowed target amplification in the characterized highly virulent Fo koae isolates but did not allow product amplification in low-virulence or non-pathogenic isolates of Fo. Thus, primers developed in this study will be useful for early detection and monitoring of highly virulent strains of Fo koae. Isolate verification is also important for disease resistance-breeding programs that require a diverse set of highly virulent Fo koae isolates for their disease-screening assays to develop disease-resistant koa. CONCLUSIONS: These results provide the framework for understanding the pathogen genes necessary for koa wilt disease and the genetic variation of Fo koae populations across the Hawaiian Islands.


Assuntos
Fusarium , Primers do DNA , Fusarium/genética , Havaí , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA