Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15256, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938985

RESUMO

Although yellow and orange petal colors are derived from carotenoids in many plant species, this has not yet been demonstrated for the order Caryophyllales, which includes carnations. Here, we identified a carnation cultivar with pale yellow flowers that accumulated carotenoids in petals. Additionally, some xanthophyll compounds were esterified, as is the case for yellow flowers in other plant species. Ultrastructural analysis showed that chromoplasts with numerous plastoglobules, in which flower-specific carotenoids accumulate, were present in the pale yellow petals. RNA-seq and RT-qPCR analyses indicated that the expression levels of genes for carotenoid biosynthesis and esterification in pale yellow and pink petals (that accumulate small amounts of carotenoids) were similar or lower than in green petals (that accumulate substantial amounts of carotenoids) and white petals (that accumulate extremely low levels of carotenoids). Pale yellow and pink petals had a considerably lower level of expression of genes for carotenoid degradation than white petals, suggesting that reduced degradation activity caused accumulation of carotenoids. Our results indicate that some carnation cultivars can synthesize and accumulate esterified carotenoids. By manipulating the rate of biosynthesis and esterification of carotenoids in these cultivars, it should be feasible to produce novel carnation cultivars with vivid yellow flowers.


Assuntos
Vias Biossintéticas , Carotenoides/metabolismo , Dianthus/crescimento & desenvolvimento , Plastídeos/metabolismo , Carotenoides/química , Dianthus/genética , Dianthus/metabolismo , Esterificação , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plastídeos/genética , Análise de Sequência de RNA
2.
Plants (Basel) ; 8(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311180

RESUMO

The rooting of stem cuttings is a highly efficient procedure for the vegetative propagation of ornamental plants. In cultivated carnations, an increased auxin level in the stem cutting base produced by active auxin transport from the leaves triggers adventitious root (AR) formation from the cambium. To provide additional insight into the physiological and genetic basis of this complex trait, we studied AR formation in a collection of 159 F1 lines derived from a cross between two hybrid cultivars (2003 R 8 and 2101-02 MFR) showing contrasting rooting performances. In three different experiments, time-series for several stem and root architectural traits were quantified in detail in a subset of these double-cross hybrid lines displaying extreme rooting phenotypes and their parental genotypes. Our results indicate that the water content and area of the AR system directly contributed to the shoot water content and shoot growth. Moreover, morphometric data and rooting quality parameters were found to be associated with some stress-related metabolites such as 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor, and the conjugated auxin indol-3-acetic acid-aspartic acid (IAA-Asp).

3.
Breed Sci ; 68(4): 481-487, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30369823

RESUMO

Carnations carrying a recessive I gene show accumulation of the yellow pigment chalcononaringenin 2'-glucoside (Ch2'G) in their flowers, whereas those with a dominant I gene do accumulation the red pigment, anthocyanin. Although this metabolic alternative at the I gene could explain yellow and red flower phenotypes, it does not explain the development of orange flower phenotypes which result from the simultaneous accumulation of both Ch2'G and anthocyanin. The carnation whole genome sequencing project recently revealed that two chalcone isomerase genes are present, one that is consistent with the I gene (Dca60979) and another (Dca60978) that had not been characterized. Here, we demonstrate that Dca60979 shows a high level of gene expression and strong enzyme activity in plants with a red flower phenotype; however, functional Dca60979 transcripts are not detected in plants with an orange flower phenotype because of a dTdic1 insertion event. Dca60978 was expressed at a low level and showed a low level of enzyme activity in plants, which could catalyze a part of chalcone to naringenin to advance anthocyanin synthesis but the other part remained to be catalyzed chalcone to Ch2'G by chalcone 2'-glucosyltransferase, resulting in accumulation of anthocyanin and Ch2'G simultaneously to give orange color.

4.
Breed Sci ; 68(1): 139-143, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29681756

RESUMO

In a previous study, two genes responsible for white flower phenotypes in carnation were identified. These genes encoded enzymes involved in anthocyanin synthesis, namely, flavanone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR), and showed reduced expression in the white flower phenotypes. Here, we identify another candidate gene for white phenotype in carnation flowers using an RNA-seq analysis followed by RT-PCR. This candidate gene encodes a transcriptional regulatory factor of the basic helix-loop-helix (bHLH) type. In the cultivar examined here, both F3H and DFR genes produced active enzyme proteins; however, expression of DFR and of genes for enzymes involved in the downstream anthocyanin synthetic pathway from DFR was repressed in the absence of bHLH expression. Occasionally, flowers of the white flowered cultivar used here have red speckles and stripes on the white petals. We found that expression of bHLH occurred in these red petal segments and induced expression of DFR and the following downstream enzymes. Our results indicate that a member of the bHLH superfamily is another gene involved in anthocyanin synthesis in addition to structural genes encoding enzymes.

5.
PLoS One ; 10(7): e0133123, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26230608

RESUMO

Carnation is one of the most important species on the worldwide market of cut flowers. Commercial carnation cultivars are vegetatively propagated from terminal stem cuttings that undergo a rooting and acclimation process. For some of the new cultivars that are being developed by ornamental breeders, poor adventitious root (AR) formation limits its commercial scaling-up, due to a significant increase in the production costs. We have initiated a genetical-genomics approach to determine the molecular basis of the differences found between carnation cultivars during adventitious rooting. The detailed characterization of AR formation in several carnation cultivars differing in their rooting losses has been performed (i) during commercial production at a breeders' rooting station and (ii) on a defined media in a controlled environment. Our study reveals the phenotypic signatures that distinguishes the bad-rooting cultivars and provides the appropriate set-up for the molecular identification of the genes involved in AR development in this species.


Assuntos
Dianthus/crescimento & desenvolvimento , Dianthus/genética , Dianthus/fisiologia , Genes de Plantas , Fenótipo , Melhoramento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento
6.
Crop Prot ; 26(7): 1049-1054, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32287715

RESUMO

Carnation mottle virus (CarMV), Carnation etched ring virus (CERV), Carnation vein mottle virus (CVMV), Carnation ringspot virus (CRSV), Carnation Italian ringspot virus (CIRV) and Carnation latent virus (CLV) are the most important viruses affecting carnation crops. All except CERV are RNA viruses. Viral RNA or DNA accumulation on root, stem, leaf, sepal, petal, stamen, pistil and ovary tissues of infected carnation or Saponaria vaccaria plants was analysed by non-isotopic molecular hybridisation. High-titres of CarMV, CRSV, CIRV, and CLV accumulated in all plant tissues whereas CERV and CVMV were irregularly distributed over the plant. High-titres of all viruses accumulated in leaf, petal, stamen, pistil, and ovary tissues, so leaves or petals are a good tissue for routine diagnosis. Six chemicals were evaluated for inactivation of all carnation viruses in infected extracts. Commercial bleach at 7% (v/v) or NaOH at 0.5% (w/v) was found to inactivate all viruses after 60 s treatment in a systemic S. vaccaria bioassay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA