Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Front Physiol ; 15: 1416639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234310

RESUMO

Background: Individuals affected by the post-covid condition (PCC) show an increased fatigue and the so-called post-exertion malaise (PEM) that led health professionals to advise against exercise although accumulating evidence indicates the contrary. The goal of this study is to determine the impact of a closely monitored 8-week mixed exercise program on physical capacity, symptoms, fatigue, systemic oxidative stress and plasma proteomic profiles of PCC cases. Methods: Twenty-five women and men with PCC were assigned sequentially to exercise (n = 15) and non-exercise (n = 10) groups. Individuals with no PCC served as a control group. The exercise program included cardiovascular and resistance exercises. Physical capacity, physical activity level and the presence of common PCC symptoms were measured before and after the intervention. Fatigue was measured the day following each exercise session. Plasma and PBMC samples were collected at the beginning and end of the training program. Glutathione and deoxyguanosine levels in PBMC and plasma proteomic profiles were evaluated. Results: Bicep Curl (+15% vs 4%; p = 0.040) and Sit-to-Stand test (STS-30 (+31% vs +11%; p = 0.043)) showed improvement in the exercise group when compared to the non-exercise group. An interaction effect was also observed for the level of physical activity (p =0.007) with a positive effect of the program on their daily functioning and without any adverse effects on general or post-effort fatigue. After exercise, glutathione levels in PBMCs increased in women but remained unchanged in men. Discernable changes were observed in the plasma proteomics profile with certain proteins involved in inflammatory response decreasing in the exercise group. Conclusions: Supervised exercise adapted to the level of fatigue and ability is safe and effective in PCC patients in improving their general physical capacity and wellbeing. Systemic molecular markers that accompany physical improvement can be monitored by analyzing plasma proteomics and markers of oxidative stress. Large-scale studies will help identify promising molecular markers to objectively monitor patient improvement.

2.
Cells ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995003

RESUMO

Lung parenchymal hypoxia has emerged as a cardinal feature of idiopathic pulmonary fibrosis (IPF). Hypoxia promotes cancer cell invasion and metastasis through signaling that is dependent upon the lysophosphatidic acid (LPA) receptor, LPA1 (LPAR1). Abundant data indicate that LPA1-dependent signaling also enhances lung fibrogenesis in IPF. We recently reported that fibroblasts isolated from the lungs of individuals with IPF have an increased capacity to form subcellular matrix-degradative structures known as invadosomes, an event that correlates with the degree of lung fibrosis. We therefore hypothesized that hypoxia promotes invadosome formation in lung fibroblasts through LPA1-dependent signaling. Here, it is demonstrated that invadosome formation by fibroblasts from the lungs of individuals with advanced IPF is inhibited by both the tyrosine receptor kinase inhibitor nintedanib and inhibition of LPA1. In addition, exposure of normal human lung fibroblasts to either hypoxia or LPA increased their ability to form invadosomes. Mechanistically, the hypoxia-induced invadosome formation by lung fibroblasts was found to involve LPA1 and PDGFR-Akt signaling. We concluded that hypoxia increases the formation of invadosomes in lung fibroblasts through the LPA1 and PDGFR-Akt signaling axis, which represents a potential target for suppressing lung fibrosis.


Assuntos
Fibroblastos , Pulmão , Podossomos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/patologia , Pulmão/metabolismo , Podossomos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Hipóxia Celular , Lisofosfolipídeos/metabolismo , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
3.
Front Immunol ; 14: 1223936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809081

RESUMO

Background: Following SARS-CoV-2 infection a significant proportion of convalescent individuals develop the post-COVID condition (PCC) that is characterized by wide spectrum of symptoms encompassing various organs. Even though the underlying pathophysiology of PCC is not known, detection of viral transcripts and antigens in tissues other than lungs raise the possibility that PCC may be a consequence of aberrant immune response to the viral antigens. To test this hypothesis, we evaluated B cell and antibody responses to the SARS-CoV-2 antigens in PCC patients who experienced mild COVID-19 disease during the pre-vaccination period of COVID-19 pandemic. Methods: The study subjects included unvaccinated male and female subjects who developed PCC or not (No-PCC) after clearing RT-PCR confirmed mild COVID-19 infection. SARS-CoV-2 D614G and omicron RBD specific B cell subsets in peripheral circulation were assessed by flow cytometry. IgG, IgG3 and IgA antibody titers toward RBD, spike and nucleocapsid antigens in the plasma were evaluated by ELISA. Results: The frequency of the B cells specific to D614G-RBD were comparable in convalescent groups with and without PCC in both males and females. Notably, in females with PCC, the anti-D614G RBD specific double negative (IgD-CD27-) B cells showed significant correlation with the number of symptoms at acute of infection. Anti-spike antibody responses were also higher at 3 months post-infection in females who developed PCC, but not in the male PCC group. On the other hand, the male PCC group also showed consistently high anti-RBD IgG responses compared to all other groups. Conclusions: The antibody responses to the spike protein, but not the anti-RBD B cell responses diverge between convalescent males and females who develop PCC. Our findings also suggest that sex-related factors may also be involved in the development of PCC via modulating antibody responses to the SARS-CoV-2 antigens.


Assuntos
COVID-19 , Humanos , Feminino , Masculino , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda , Formação de Anticorpos , Pandemias , Imunoglobulina G
4.
Antibiotics (Basel) ; 12(6)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37370388

RESUMO

Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.

5.
Am J Physiol Cell Physiol ; 323(5): C1374-C1392, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121129

RESUMO

Chronic obstructive pulmonary disease (COPD) is a leading cause of death and cigarette smoke is the main risk factor. Detecting its earliest stages and preventing a decline in lung function are key goals. The pathogenesis of COPD is complex but has some similarities to cystic fibrosis (CF), a disease caused by mutations in the cftr gene. CF leads to chronic inflammation, abnormal mucus, and cycles of infection. Cigarette smoke exposure also causes CFTR dysfunction, and it is probably not a coincidence that inflammation, mucus obstruction, and infections are also characteristics of COPD, although the exacerbations can be quite different. We review here the acute effects of cigarette smoke on CFTR function and its potential role in COPD. Understanding CFTR regulation by cigarette smoke may identify novel drug targets and facilitate the development of therapeutics that reduce the progression and severity of COPD.


Assuntos
Fumar Cigarros , Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fumar Cigarros/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/genética , Fibrose Cística/genética , Nicotiana , Inflamação
6.
Am J Respir Cell Mol Biol ; 67(2): 164-172, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612953

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with no curative pharmacological treatment. Current preclinical models fail to accurately reproduce human pathophysiology and are therefore poor predictors of clinical outcomes. Here, we investigated whether the chick embryo chorioallantoic membrane (CAM) assay supports the implantation of xenografts derived from IPF lung tissue and primary IPF lung fibroblasts and can be used to evaluate the efficacy of antifibrotic drugs. We demonstrate that IPF xenografts maintain their integrity and are perfused with chick embryo blood. Size measurements indicate that the xenografts amplify on the CAM, and Ki67 and pro-collagen type I immunohistochemical staining highlight the presence of proliferative and functional cells in the xenografts. Moreover, the IPF phenotype and immune microenvironment of lung tissues are retained when cultivated on the CAM and the fibroblast xenografts mimic invasive IPF fibroblastic foci. Daily treatments of the xenografts with nintedanib and PBI-4050 significantly reduce their size, fibrosis-associated gene expression, and collagen deposition. Similar effects are found with GLPG1205 and fenofibric acid, two drugs that target the immune microenvironment. Our CAM-IPF model represents the first in vivo model of IPF that uses human lung tissue. This rapid and cost-effective assay could become a valuable tool for predicting the efficacy of antifibrotic drug candidates for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia
8.
Respir Med ; 192: 106728, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998112

RESUMO

BACKGROUND: Inhaled antibiotics have been incorporated into contemporary European and British guidelines for bronchiectasis, yet no inhaled antibiotics have been approved in the United States or Europe for the treatment of bronchiectasis not related to cystic fibrosis. Pseudomonas aeruginosa infection is common in patients with bronchiectasis, contributing to a cycle of progressive inflammation, exacerbations, and airway remodelling. OBJECTIVE: The aim of the current study was to identify and evaluate published studies of inhaled tobramycin solution or powder in patients with bronchiectasis and P. aeruginosa infection not associated with cystic fibrosis. METHODS: A literature review was conducted utilising the PubMed and Cochrane databases. Studies published in the English language that reported safety and/or efficacy outcomes of inhaled tobramycin either alone or in combination with other antibiotics were included. RESULTS: Seven clinical trials published between 1999 and 2021 were identified that met inclusion criteria. Inhaled tobramycin therapy was effective in reducing P. aeruginosa microbial density in the sputum of patients with bronchiectasis. Several studies demonstrated favourable impacts on hospitalisations, number and severity of exacerbations, and symptoms. Other studies were underpowered for these clinical outcomes or were exploratory in nature. Although tobramycin was generally well tolerated, some evidence of treatment-associated wheezing was reported. CONCLUSIONS: In patients with bronchiectasis and chronic P. aeruginosa infection, inhaled tobramycin was effective in reducing the density of bacteria in sputum, which may be associated with additional clinical benefits. Definitive phase 3 trials of inhaled tobramycin in patients with bronchiectasis are indicated to determine clinical efficacy and long-term safety.


Assuntos
Bronquiectasia , Infecções por Pseudomonas , Administração por Inalação , Antibacterianos/uso terapêutico , Bronquiectasia/tratamento farmacológico , Bronquiectasia/microbiologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Tobramicina
9.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613948

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by abnormal fibroblast accumulation in the lung leading to extracellular matrix deposition and remodeling that compromise lung function. However, the mechanisms of interstitial invasion and remodeling by lung fibroblasts remain poorly understood. The invadosomes, initially described in cancer cells, consist of actin-based adhesive structures that coordinate with numerous other proteins to form a membrane protrusion capable of degrading the extracellular matrix to promote their invasive phenotype. In this regard, we hypothesized that invadosome formation may be increased in lung fibroblasts from patients with IPF. Public RNAseq datasets from control and IPF lung tissues were used to identify differentially expressed genes associated with invadosomes. Lung fibroblasts isolated from bleomycin-exposed mice and IPF patients were seeded with and without the two approved drugs for treating IPF, nintedanib or pirfenidone on fluorescent gelatin-coated coverslips for invadosome assays. Several matrix and invadosome-associated genes were increased in IPF tissues and in IPF fibroblastic foci. Invadosome formation was significantly increased in lung fibroblasts isolated from bleomycin-exposed mice and IPF patients. The degree of lung fibrosis found in IPF tissues correlated strongly with invadosome production by neighboring cells. Nintedanib suppressed IPF and PDGF-activated lung fibroblast invadosome formation, an event associated with inhibition of the PDGFR/PI3K/Akt pathway and TKS5 expression. Fibroblasts derived from IPF lung tissues express a pro-invadosomal phenotype, which correlates with the severity of fibrosis and is responsive to antifibrotic treatment.


Assuntos
Fibrose Pulmonar Idiopática , Podossomos , Camundongos , Animais , Podossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Fibrose , Bleomicina/uso terapêutico
10.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201249

RESUMO

Rare diseases affect 400 million individuals worldwide and cause significant morbidity and mortality. Finding solutions for rare diseases can be very challenging for physicians and researchers. Cystic fibrosis (CF), a genetic, autosomal recessive, multisystemic, life-limiting disease does not escape this sad reality. Despite phenomenal progress in our understanding of this disease, treatment remains difficult. Until recently, therapies for CF individuals were focused on symptom management. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and its product, a protein present at the apical surface of epithelial cells regulating ion transport, allowed the scientific community to learn about the basic defect in CF and to study potential therapies targeting the dysfunctional protein. In the past few years, promising therapies with the goal to restore CFTR function became available and changed the lives of several CF patients. These medications, called CFTR modulators, aim to correct, potentialize, stabilize or amplify CFTR function. Furthermore, research is ongoing to develop other targeted therapies that could be more efficient and benefit a larger proportion of the CF community. The purpose of this review is to summarize our current knowledge of CF genetics and therapies restoring CFTR function, particularly CFTR modulators and gene therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética , Mutação , Fibrose Cística/genética , Fibrose Cística/metabolismo , Humanos , Transporte de Íons
12.
Front Pharmacol ; 11: 554353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101020

RESUMO

Neutrophil killing of bacteria is mediated by oxidative and non-oxidative mechanisms. Oxidants are generated through the NADPH oxidase complex, whereas antimicrobial proteins and peptides rank amongst non-oxidative host defenses. Mucus hypersecretion, deficient hydration and poor clearance from the airways are prominent features of cystic fibrosis (CF) lung disease. CF airways are commonly infected by Pseudomonas aeruginosa and Burkholderia cepacia complex bacteria. Whereas the former bacterium is highly sensitive to non-oxidative killing, the latter is only killed if the oxidative burst is intact. Despite an abundance of neutrophils, both pathogens thrive in CF airway secretions. In this study, we report that secreted mucins protect these CF pathogens against host defenses. Mucins were purified from CF sputum and from the saliva of healthy volunteers. Whereas mucins did not alter the phagocytosis of Pseudomonas aeruginosa and Burkholderia cenocepacia by neutrophils, they completely suppressed bacterial killing. Accordingly, mucins markedly inhibited non-oxidative bacterial killing by neutrophil granule extracts, or by lysozyme and the cationic peptide, human ß defensin-2 (HBD2). Mucins also suppressed the neutrophil oxidative burst through a charge-dependent mechanism that could be reversed by the cationic aminoglycoside, tobramycin. Our data indicate that airway mucins protect Gram-negative bacteria against neutrophil killing by suppressing the oxidative burst and inhibiting the bactericidal capacity of cationic proteins and peptides. Mucin hypersecretion, dehydration, stasis and anionic charge represent key therapeutic targets for improving host defenses and airway inflammation in CF and other muco-secretory airway diseases.

13.
Semin Respir Crit Care Med ; 40(6): 715-726, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659725

RESUMO

Cystic fibrosis (CF) is a common, life-threatening, multisystemic, autosomal recessive disorder. In the last few years, giant steps have been made with regard to the understanding of CF pathophysiology, allowing the scientific community to propose mechanisms that cause the myriad of CF clinical manifestations. Following the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, the structure and function of the CFTR protein were described. Since then, more than 2,000 variants of the CFTR gene and their impact on the amount and function of the CFTR protein have been reported. The role of the CFTR protein as an ion channel transporting chloride and bicarbonate and its repercussions on different epithelial cell-lined organs and mucus are now better understood. Mechanisms behind susceptibility to infection in CF have also been proposed and include abnormalities in the composition, volume and acidity of the airway surface liquid, changes in the submucosal gland's anatomy and function, and deficiencies in the mucociliary clearance system. Numerous hypotheses explaining the excessive inflammatory response in CF are also debated and involve impaired mucociliary clearance, persistent hypoxia, lipid abnormalities, protease and antiprotease disproportion, and oxidant and antioxidant imbalance. The purpose of this review is to summarize our current knowledge of CF pathophysiology, including significant historic discoveries and most recent breakthroughs, and to improve understanding and awareness of this fatal disease.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Pulmão/fisiopatologia , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Inflamação , Pulmão/metabolismo , Depuração Mucociliar , Infecções Respiratórias
16.
Front Microbiol ; 10: 2880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921058

RESUMO

Staphylococcus aureus and Pseudomonas aeruginosa are prevalent lung pathogens in cystic fibrosis (CF). Whereas co-infection worsens the clinical outcome, prototypical strains are usually antagonistic in vitro. We sought to resolve the discrepancy between these in vitro and in vivo observations. In vitro, growth kinetics for co-cultures of co-isolates from CF patients showed that not all P. aeruginosa strains affected S. aureus viability. On solid media, S. aureus slow-growing colonies were visualized around some P. aeruginosa strains whether or not S. aureus viability was reduced in liquid co-cultures. The S. aureus-P. aeruginosa interactions were then characterized in a mouse lung infection model. Lung homogenates were plated on selective media allowing colony counts of either bacterium. Overall, 35 P. aeruginosa and 10 S. aureus strains (clinical, reference, and mutant strains), for a total of 200 co-infections, were evaluated. We observed that S. aureus colonization of lung tissues was promoted by P. aeruginosa and even by strains showing antagonism in vitro. Promotion was proportional to the extent of P. aeruginosa colonization, but no correlation was found with the degree of myeloperoxidase quantification (as marker of inflammation) or with specific virulence-associated factors using known mutant strains of S. aureus and P. aeruginosa. On the other hand, P. aeruginosa significantly increased the expression of two possible cell receptors for S. aureus, i.e., ICAM-1 and ITGA-5 (marker for integrin α5ß1) in lung tissue, while mono-infections by S. aureus did not. This study provides insights on polymicrobial interactions that may influence the progression of CF-associated pulmonary infections.

17.
Eur Respir J ; 53(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30578394

RESUMO

PBI-4050 is a novel orally active small-molecule compound with demonstrated anti-fibrotic activity in several models of fibrosis, including lung fibrosis. We present results from our first clinical study of PBI-4050 in patients with idiopathic pulmonary fibrosis (IPF).This 12-week open-label study explored the safety, efficacy and pharmacokinetics of daily oral doses of 800 mg PBI-4050 alone and in combination with nintedanib or pirfenidone in patients with predominantly mild or moderate IPF. Nine patients received PBI-4050 alone, 16 patients received PBI-4050 with nintedanib and 16 patients received PBI-4050 with pirfenidone.PBI-4050 alone or in combination with nintedanib or pirfenidone was well tolerated. Pharmacokinetic profiles for PBI-4050 were similar in the PBI-4050 alone and PBI-4050+nintedanib groups but reduced in the PBI-4050+pirfenidone group, suggesting a drug-drug interaction. There were no significant changes in forced vital capacity (FVC), either in % predicted or mL, from baseline to week 12 for PBI-4050 alone or PBI-4050+nintedanib. In contrast, a statistically significant reduction (p<0.024) in FVC % pred was seen for PBI-4050+pirfenidone after 12 weeks.There were no safety concerns with PBI-4050 alone or in combination with nintedanib or pirfenidone in IPF patients. The stability of FVC between baseline and week 12 looked encouraging for PBI-4050 alone and in combination with nintedanib.


Assuntos
Acetatos/administração & dosagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Acetatos/farmacocinética , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Combinada , Feminino , Humanos , Indóis/administração & dosagem , Masculino , Pessoa de Meia-Idade , Segurança do Paciente , Piridonas/administração & dosagem , Resultado do Tratamento
19.
Mar Drugs ; 16(6)2018 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861448

RESUMO

Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18⁻48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. TRIAL REGISTRATION: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Alimentos Formulados , Monoglicerídeos/uso terapêutico , Adulto , Anti-Inflamatórios/farmacologia , Ácido Araquidônico/sangue , Ácido Araquidônico/metabolismo , Fibrose Cística/sangue , Fibrose Cística/metabolismo , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/metabolismo , Método Duplo-Cego , Eritrócitos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Interleucina-6/sangue , Elastase de Leucócito/sangue , Pessoa de Meia-Idade , Monoglicerídeos/farmacologia , Projetos Piloto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA