Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(9): 1033-1044, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156701

RESUMO

Heterotrimeric G proteins - comprising Gα, Gß, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.


Assuntos
Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Oryza , Oryza/genética , Oryza/metabolismo , Zea mays/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Arabidopsis/genética , Fenótipo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31358515

RESUMO

Semidwarf stature is a valuable agronomic trait in grain crops that reduces lodging and increases harvest index. A fundamental advance during the 1960s Green Revolution was the introduction of semidwarf cultivars of rice and wheat. Essentially, all semidwarf varieties of rice under cultivation today owe their diminished stature to a specific null mutation in the gibberellic acid (GA) biosynthesis gene, SD1 However, it is now well-established that, in addition to GAs, brassinosteroids and strigolactones also control plant height. In this review, we describe the synthesis and signaling pathways of these three hormones as understood in rice and discuss the mutants and transgenics in these pathways that confer semidwarfism and other valuable architectural traits. We propose that such genes offer underexploited opportunities for broadening the genetic basis and germplasm in semidwarf rice breeding.


Assuntos
Agricultura , Oryza/genética , Brassinosteroides/metabolismo , Genes de Plantas , Giberelinas/metabolismo , Lactonas/metabolismo , Oryza/metabolismo
3.
Plant Biotechnol J ; 16(11): 1918-1927, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604159

RESUMO

Rice tungro disease (RTD) is a serious constraint in rice production across tropical Asia. RTD is caused by the interaction between Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus. RTSV resistance found in traditional cultivars has contributed to a reduction in the incidence of RTD in the field. Natural RTSV resistance is a recessive trait controlled by the translation initiation factor 4 gamma gene (eIF4G). The Y1059 V1060 V1061 residues of eIF4G are known to be associated with the reactions to RTSV. To develop new sources of resistance to RTD, mutations in eIF4G were generated using the CRISPR/Cas9 system in the RTSV-susceptible variety IR64, widely grown across tropical Asia. The mutation rates ranged from 36.0% to 86.6%, depending on the target site, and the mutations were successfully transmitted to the next generations. Among various mutated eIF4G alleles examined, only those resulting in in-frame mutations in SVLFPNLAGKS residues (mainly NL), adjacent to the YVV residues, conferred resistance. Furthermore, our data suggest that eIF4G is essential for normal development, as alleles resulting in truncated eIF4G could not be maintained in homozygous state. The final products with RTSV resistance and enhanced yield under glasshouse conditions were found to no longer contain the Cas9 sequence. Hence, the RTSV-resistant plants with the novel eIF4G alleles represent a valuable material to develop more diverse RTSV-resistant varieties.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Resistência à Doença/genética , Fator de Iniciação Eucariótico 4G/genética , Edição de Genes/métodos , Oryza/genética , Doenças das Plantas/virologia , Tungrovirus , Alelos , Fator de Iniciação Eucariótico 4G/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Oryza/virologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/virologia
4.
Front Plant Sci ; 5: 302, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25018764

RESUMO

Zinc-finger nucleases (ZFNs) have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs) at specific sites, which are further repaired through homologous recombination (HR) or non-homologous end joining (NHEJ). However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3), harboring ß-glucuronidase (GUS) as a reporter gene, were used to identify safe harbor loci on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR). Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA