Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 132: 155798, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936259

RESUMO

BACKGROUND: Traumatic brain injury (TBI), especially neuroinflammation after TBI persists for a long time and causes significant neurodegenerative pathologies and neuropsychiatric problems. PURPOSE: In this study, the neuroprotective effect of AnGong NiuHuang (AGNH) on TBI was investigated and the mechanism was revealed by integrating multiple omics. METHODS: The rats with TBI were administrated with AGNH for 5 consecutive days and the effect was evaluated by using modified neurologic severity score (mNSS), brain edema, H&E staining, Nissl staining and TUNEL staining. The mechanism was revealed by using RNA sequencing (RNA-seq) and metabolomic analysis. The inflammatory factors, apoptosis-related proteins and identified vital targets were validated by enzyme-linked immunosorbent assay, western blotting and immunofluorescence staining. RESULTS: Administration of AGNH decreased mNSS, brain edema, brain structure damage, but increased Nissl body density in the rats with TBI. Additionally, AGNH reduced IL-1ß, IL-17A, TNF-α, MMP9, MCP-1, IL-6, Bax and TUNEL staining,but elevated Bcl2 level. Integrating transcriptomic analysis and metabolomic analysis identified vital targets and critical metabolic pathways. Importantly, AGNH treatment reduced the expression of TLR4, MYD88, NLRP3, BTK, IL-18 and Caspase 1 as well as glycerophospholipid metabolism-related protein AGPAT2 and PLA2G2D, and decreased the nuclear translocation of NF-κB p65 in the brain of TBI rats. Additionally, AGNH increased phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylethanolamine (PE), but decreased 1-acyl-sn-glycero-3-phosphocholine (LysoPC) in the metabolic pathway of glycerophospholipid metabolism. CONCLUSION: Taken together, AGNH inhibited NF-κB/NLRP3 axis to suppress neuroinflammation, cell apoptosis and pyroptosis, and improved metabolic pathways of glycerophospholipid metabolism after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Medicamentos de Ervas Chinesas , Glicerofosfolipídeos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Glicerofosfolipídeos/metabolismo , Fármacos Neuroprotetores/farmacologia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1932-1946, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812206

RESUMO

This study investigated the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules based on metabonomics, network pharmacology, and molecular docking. The aging mice model was induced by intraperitoneal injection of D-galactose(D-gal). Mice were randomly divided into a control group, model group, melatonin group(MT group), and low, medium, and high dose groups of Xiyangshen Sanqi Danshen Granules(XSD-L, XSD-M, and XSD-H). An open-field experiment was conducted, and the expression of cell cycle arrest proteins(p16) and phosphorylated histone family 2A variant(γH2AX) in the brain tissue was detected by immunofluorescence. The expression of interleukin-1ß(IL-1ß) and interleukin-6(IL-6) in the brain tissue was detected by enzyme-linked immunosorbent assay(ELISA). Metabolomics analysis was performed on the serum of mice in control, model, and XSD-H groups to obtain metabolic processes and metabolites. The effective chemical components and potential targets of Xiyangshen Sanqi Danshen Granules were predicted through network pharmacology, and the network diagram of "drug-effective chemical components-key targets" was constructed. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis were carried out, and a protein-protein interaction(PPI) network was constructed to clarify the anti-aging mechanism of Xiyangshen Sanqi Danshen Granules. The results showed that the Xiyangshen Sanqi Danshen Granules could significantly improve the aging degree of D-gal mice, significantly improve the total motion distance and the mean motion speed of D-gal mice, and reduce the rest time. In addition, Xiyangshen Sanqi Danshen Granules could significantly reduce the protein levels of IL-6 and IL-1ß and the expression of p16 and γH2AX in D-gal mice. Compared with the model group, 66 differential metabolites(DMs) were significantly up-regulated, and 91 DMs were down-regulated in the XSD-H group. Moreover, four key metabolic pathways(tryptophan metabolism, glycerophospholipid metabolism, pyrimidine metabolism, and lysine degradation) and 16 biomarkers(lysine, tryptophan, indoleacetaldehyde, PCs, LysoPCs, 3-hydroxyanthranilic acid, melatonin, etc) were screened out. 58 main active components and 62 key targets of Xiyangshen Sanqi Danshen Granules were screened by network pharmacology. The GO functional enrichment analysis found the positive regulation of gene expression, drug response, etc. KEGG pathway enrichment screening involved diabetic complications-related AGE-RAGE signaling pathway, hypoxia inducible factor-1 signaling pathway, etc. Through the PPI network and molecular docking, six potential core targets of STAT3, MAPK1, MAPK14, EGFR, FOS, and STAT1 were screened.


Assuntos
Envelhecimento , Biologia Computacional , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Masculino , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Salvia miltiorrhiza/química , Interleucina-1beta/genética , Interleucina-1beta/metabolismo
3.
Mol Neurobiol ; 61(10): 7500-7516, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38401045

RESUMO

As a famous prescription in China, AnGong NiuHuang (AGNH) pill exerts good neuroprotection for ischaemic stroke (IS), but its mechanism is still unclear. In this study, the neuroprotection of AGNH was evaluated in the rat IS model which were established with the surgery of middle cerebral artery occlusion (MCAO), and the potential mechanism was elucidated by transcriptomic analysis and metabolomic analysis. AGNH treatment obviously decreased the infarct volume and Zea-Longa 5-point neurological deficit scores, improved the survival percentage of rats, regional cerebral blood flow (rCBF), and rat activity distance and activity time. Transcriptomics showed that AGNH exerted its anti-inflammatory effects by affecting the regulatory network including Tyrobp, Syk, Tlr2, Myd88 and Ccl2 as the core. Integrating transcriptomics and metabolomics identified 8 key metabolites regulated by AGNH, including L-histidine, L-serine, L-alanine, fumaric acid, malic acid, and N-(L-arginino) succinate, 1-pyrroline-4-hydroxy-2-carboxylate and 1-methylhistamine in the rats with IS. Additionally, AGNH obviously reduced Tyrobp, Syk, Tlr2, Myd88 and Ccl2 at both the mRNA and protein levels, decreased IL-1ß, KC-GRO, IL-13, TNF-α, cleaved caspase 3 and p65 nucleus translocation, but increased IκBα expression. Network pharmacology analysis showed that quercetin, beta-sitosterol, baicalein, naringenin, acacetin, berberine and palmatine may play an important role in protecting against IS. Taken together, this study reveals that AGNH reduced neuroinflammation and protected against IS by inhibiting Tyrobp/Syk and Tlr2/Myd88, as well as NF-κB signalling pathway and regulating multiple metabolites.

4.
Mol Neurobiol ; 60(10): 5533-5547, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37328677

RESUMO

Optimizing the metabolic phenotype to improve cerebral function is critical for treatment of cerebral ischemia-reperfusion (I/R) injury. Guhong injection (GHI), which comprised safflower extract and aceglutamide, is widely prescribed in Chinese medicine for the treatment of cerebrovascular diseases. In this study, a combination of LC-QQQ-MS and MALDI-MSI were utilized to explore tissue-specific metabolic alterations in the brain of I/R, as well as to evaluate the therapeutic effect of GHI. Pharmacological evaluation demonstrated that GHI can significantly improve infarction rate, neurological deficit, cerebral blood flow, and neuronal damage in I/R rats. Based on LC-QQQ-MS, 23 energy metabolites were found to be significantly altered in the I/R group compared to the sham group (P < 0.05). After GHI treatment, 12 metabolites, including G6P, TPP, NAD, citrate, succinate, malate, ATP, GTP, GDP, ADP, NADP, and FMN showed a significant tendency of returning to baseline values (P < 0.05). Based on MALDI-MSI, 4 metabolites in glycolysis and TCA, 4 metabolites in nucleic acid metabolism, 4 amino acid metabolites, and 6 metabolites were discovered and compared between the different groups in the four special regions of cortex, hippocampus, hypothalamus, and striatum. Parts of these were found to have significant changes after I/R in the special brain region, and were regulated by GHI. The study provides comprehensive and detailed information for specific metabolic reprogramming of brain tissue in rats with I/R, and the therapeutic effect of GHI. Schema describing the discovery strategies of integrated LC-MS and MALDI-MSI to identify cerebral ischemia reperfusion metabolic reprogramming and GHI therapeutic effects.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Reperfusão
5.
Front Pharmacol ; 14: 1175970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101548

RESUMO

Dengzhan Shengmai (DZSM), a traditional Chinese medicine formulation, has been administered extensively to elderly individuals with cognitive impairment (CI). However, the underlying mechanisms by which Dengzhan Shengmai improves cognitive impairment remains unknown. This study aimed to elucidate the underlying mechanism of the effect of Dengzhan Shengmai on aging-associated cognitive impairment via a comprehensive combination of transcriptomics and microbiota assessment. Dengzhan Shengmai was orally administered to a D-galactose-induced aging mouse model, and evaluation with an open field task (OFT), Morris water maze (MWM), and histopathological staining was performed. Transcriptomics and 16S rDNA sequencing were applied to elucidate the mechanism of Dengzhan Shengmai in alleviating cognitive deficits, and enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (PCR), and immunofluorescence were employed to verify the results. The results first confirmed the therapeutic effects of Dengzhan Shengmai against cognitive defects; specifically, Dengzhan Shengmai improved learning and impairment, suppressed neuro loss, and increased Nissl body morphology repair. Comprehensive integrated transcriptomics and microbiota analysis indicated that chemokine CXC motif receptor 4 (CXCR4) and its ligand CXC chemokine ligand 12 (CXCL12) were targets for improving cognitive impairments with Dengzhan Shengmai and also indirectly suppressed the intestinal flora composition. Furthermore, in vivo results confirmed that Dengzhan Shengmai suppressed the expression of CXC motif receptor 4, CXC chemokine ligand 12, and inflammatory cytokines. This suggested that Dengzhan Shengmai inhibited CXC chemokine ligand 12/CXC motif receptor 4 expression and modulated intestinal microbiome composition by influencing inflammatory factors. Thus, Dengzhan Shengmai improves aging-related cognitive impairment effects via decreased CXC chemokine ligand 12/CXC motif receptor 4 and inflammatory factor modulation to improve gut microbiota composition.

6.
J Ethnopharmacol ; 311: 116439, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004745

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is one of the leading causes of mortality, but therapies are limited. Dengzhan Shengmai capsule (DZSM) was included by the Chinese Pharmacopoeia 2020 and has been broadly used for the treatment of ischemic stroke. However, the mechanism of DZSM against ischemic stroke is unclear. AIM OF THE STUDY: This study used RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) to investigate the mechanism of action of DZSM against ischemic stroke. MATERIALS AND METHODS: The rats were randomly divided into six groups: the Sham, I/R (water), I/R + DZSM-L (0.1134g/kg), I/R + DZSM-H (0.4536g/kg), I/R + NMDP (20mg/kg), and I/R + Ginaton (20mg/kg). The rats were administrated drugs for 5 days then followed by the ischemic brain injury caused by middle cerebral artery occlusion (MCAO). The neuroprotective effect was assessed by infraction rate, neurological deficit scores, regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) staining, and Nissl staining. Based on RNA-seq and scRNA-seq, the vital biological processes and core targets of DZSM against cerebral ischemia were revealed. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence (IF) staining were used to investigate the vital biological processes and core targets of DZSM against ischemic stroke. RESULTS: Administration of DZSM significantly reduced the infarction rate and Zea Longa score, Garcia JH score, and ameliorated the reduction in rCBF. And alleviated the neuronal damage, such as increased neuronal density level and Nissl bodies density level. RNA-seq analysis revealed that DZSM played important roles in inflammation and apoptosis. ELISA and IF straining validation confirmed that DZSM significantly decreased the expression of IL-6, IL-1ß, TNF-α, ICAM-1, IBA-1, MMP9, and Cleaved caspase-3 in MCAO rats. ScRNA-seq analysis identified 8 core targets in neurons including HSPB1, SPP1, MT2A, GFAP, IFITM3, VIM, CRIP1, and GPD1, and VIM and IFITM3 was verified to be decreased by DZSM in neurons. CONCLUSION: Our study illustrates the neuroprotective effect of DZSM against ischemia stroke, and VIM and IFITM3 were identified as vital targets in neurons of DZSM in protecting against MCAO-induced I/R injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Ratos , Animais , Acidente Vascular Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico
7.
Phytomedicine ; 109: 154578, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610146

RESUMO

BACKGROUND AND PURPOSE: As a complex and challenging complication for the patients with diabetes mellitus, diabetic ulcers are difficult to heal and current strategies cannot fulfill the patients' requirements. Pien Tze Huang (PZH) is a standardized medicine approved for various wounds treatments, and this study systematically investigated the effect and mechanism of intragastric administration of PZH (I-PZH) on diabetic wound healing. METHODS AND RESULTS: The effect of I-PZH on the healing of full-thickness wounds in rats with diabetes mellitus which was induced by high fat diet followed by streptozotocin injection was evaluated, and RNA sequencing (RNA-seq) and targeted central carbon metabolism metabolomics were combined to explore the underlying mechanism. I-PZH promoted wound healing, facilitated extracellular matrix synthesis, and maintained body weight of rats, but did not affect fasting blood glucose levels. Additionally, I-PZH significantly decreased 8-OHdG, cleaved caspase 3 and MMP9 levels, and increased TGF-ß1 expression. RNA-seq analysis showed that I-PZH inhibited inflammation and that the vital common targets were TLR2, IL-17A and IL-1ß; specifically affected "energy derivation by oxidation of organic compounds" with UQCRC1, NDUFS3 and SDHA as vital specific targets. Further experiments confirmed that I-PZH reduced TLR2, IL-17A and IL-1ß, increased UQCRC1, SDHA, NDUFS3, promoted ATP synthesis and restored activity of mitochondrial respiratory chain complexes I and III in diabetic wounds. Metabolomics by HPLC-MS/MS analysis showed that I-PZH reversed multiple energy metabolism-related metabolites such as glucuronic acid, GMP, d-gluconic acid, cis-aconitic acid, ribose 5-phosphate and pantothenate. CONCLUSION: This study highlights the important role of inflammation and energy generation in diabetic wound healing, reveals wound repair mechanism of PZH and promotes its clinical application in diabetic wound treatment.


Assuntos
Diabetes Mellitus , Interleucina-17 , Ratos , Animais , Espectrometria de Massas em Tandem , Receptor 2 Toll-Like , Inflamação , Cicatrização
8.
Front Pharmacol ; 14: 1288406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293673

RESUMO

Introduction: Diabetic ulcers have become one of the major complications of diabetes mellitus (DM) and are a leading cause of death and disabling disease. However, current therapies are not effective enough to meet clinical needs. A traditional Chinese medicine (TCM) formula, Pien Tze Huang (PZH), is known as a medicine that is used to treat diabetic ulcers. Methods: In this study, PZH (0.05 g/cm2 and 0.15 g/cm2) and the positive drug-rhEGF were topically administered in a high-fat diet (HFD) and streptozotocin (STZ)-induced diabetic full-thickness incisional wounds, respectively. Wound healing was assessed by wound closure rate, two-photon microscope (SHG), staining with Hematoxylin and eosin (H&E), and Masson's trichrome (MTC). Then, RNA sequencing (RNA-seq) analysis, Enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence (IF), network analysis, were performed. Results and discussion: The results showed that PZH significantly accelerated wound healing, as well as enhanced the expression of collagen. RNA-seq analysis showed that PZH has functions on various biological processes, one of the key biological processes is inflammatory response. Tlr9, Klrk1, Nod2, Tlr2, and Ifng were identified as vital targets and the NF-κB signaling pathway was identified as the vital pathway. Additionally, PZH profoundly reduced the levels of Cleaved caspase-3 and promoted the expression of CD31 and TGF-ß1. Mechanically, PZH significantly decreased expression of NKG2-D, NOD2, and TLR2, and further inhibited the activation of downstream NF-κB signaling pathway and inhibited expression of inflammatory factors (IFN-γ and IL-1ß). Importantly, we found that several active ingredients may play a significant role in diabetic wound healing, including Notoginsenoside R1, Deoxycorticosterone, Ursolic acid, and 4-Methoxyphenol. In summary, our study sheds light on the complicated mechanisms underlying the promising anti-diabetic wounds of PZH and provides the discovery of agents treating diabetic ulcers.

9.
Biomed Pharmacother ; 155: 113703, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36126455

RESUMO

BACKGROUND/AIMS: Duzhi Wan (DZW) has been extensively used in the prevention and treatment of ischemic stroke, but the mechanisms underlying its effects remain unclear. In this study, a combination of transcriptomics, metabolomics and network analysis was applied to identify the preventive mechanism of DZW in middle cerebral artery occlusion (MCAO)-induced ischemia/reperfusion (I/R) injury. METHODS: The mice were divided into five groups: the sham group, I/R group, I/R + Ginaton group, I/R+DZW-L group, and I/R+DZW-H group. Neurological deficit scores and regional cerebral blood flow (rCBF), hematoxylin and eosin (H&E) and Nissl staining results were evaluated. Transcriptomics analysis and metabolomics analysis were applied to identify the key genes and metabolites, and qRT-PCR, ELISA, and immunofluorescence were applied to verify the key targets. RESULTS: DZW significantly decreased the infarction size and neurological deficit scores, increased the rCBF percentage and neuronal number and improved neuronal morphology after MCAO. Transcriptomics and metabolomics analysis revealed that C3 and C5ar1 were core targets of DZW and indirectly regulated downstream purine metabolism, the pentose phosphate pathway, and glycerophospholipid metabolism-associated pathways via inflammatory cells. Moreover, ELISA, qRT-PCR, and immunofluorescence further confirmed that DZW significantly decreased the expression of C3, C5ar1, C5 and downstream inflammatory cytokines, including IL-6, IL-1ß and MMP-9, at the gene and protein levels, suggesting that DZW decreased neuroinflammation and inhibited related metabolic pathways. CONCLUSION: C3 and C5 play important roles in the neuroprotective and antineuroinflammatory effects of DZW in protecting against cerebral I/R. This study provides novel insights into the neuroprotective effects of DZW and its clinical application.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Transcriptoma , Hematoxilina/uso terapêutico , Amarelo de Eosina-(YS)/uso terapêutico , Interleucina-6 , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Citocinas/metabolismo , Isquemia/tratamento farmacológico , Metabolômica , Glicerofosfolipídeos/uso terapêutico , Purinas/uso terapêutico
10.
Front Pharmacol ; 13: 599979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592420

RESUMO

In recent years, the domestic and international trade volumes of Chinese medicinal materials (CMMs) keep increasing. By the end of 2019, the total amount of exported CMMs reached as high as US $1.137 billion, while imported was US $2.155 billion. A stable and controllable quality system of CMMs apparently becomes the most important issue, which needs multifaceted collaboration from harvesting CMMs at a proper season to storing CMMs at a proper temperature. However, due to imperfect storage conditions, different kinds of deteriorations are prone to occur, for instance, get moldy or rancid, which not only causes a huge waste of CMM resources but also poses a great threat to clinical medication safety and public health. The key issue is to quickly and accurately distinguish deteriorated CMM samples so as to avoid consuming low-quality or even harmful CMMs. However, some attention has been paid to study the changing quality of deteriorated CMMs and a suitable method for identifying them. In this study, as a medicine and food material which easily becomes rancid, armeniacae semen amarum (ASA) was chosen as a research objective, and experimental ASA samples of different rancidness degrees were collected. Then, various kinds of analytical methods and technologies were applied to explore the changing rules of ASA quality and figure out the key indicators for the quality evaluation of ASA in the rancid process, including the human panel, colorimeter, electronic nose, and GC/MS. This study aims to analyze the correlation between the external morphological features and the inner chemical compounds, to find out the specific components from "quantitative change" to "qualitative change" in the process of "getting rancid," and to discover the dynamic changes in the aforementioned key indicators at different stages of rancidness. The results showed since ASA samples began to get rancid with the extension of storage time, morphological features, namely, surface color and smell, changed significantly, and the degree of rancidness further deepened at the same time. Based on macroscopic identification accomplished via the human panel, ASA samples with varying degrees of rancidness were divided into four groups. The result of colorimeter analysis was in agreement with that of the human panel, as well as the determination of the amygdalin content and peroxide value. Moreover, there were obvious differences in the amygdalin content and peroxide value among ASA samples with different rancidness degrees. With a higher degree of rancidness, the content of amygdalin decreased, while the peroxide value increased significantly. The rancidness degree of ASA has a negative correlation with the amygdalin content and a positive correlation with the peroxide value. The newly discovered nonanal and 2-bromopropiophenone in rancid ASA samples may be the key components of "rancidity smell," and these two components would be the exclusive components that trigger "quantitative change" to "qualitative change" in the process of rancidness of ASA. This study sheds light on studying the internal mechanism of "rancidness" of CMMs and provides an important basis for the effective storage and safe medication of easy-to-get rancid herbs, and it also plays an important foundation for the establishment of a stable and controllable quality system for CMMs.

11.
Front Pharmacol ; 13: 818245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387346

RESUMO

C5ar1 (CD88) has been identified as an important potential therapeutic target for regulating inflammation in ischemic stroke. In this study, the neuroprotective effect of Guhong injection (GHI) on middle cerebral artery occlusion (MCAO)-induced reperfusion injury was assessed and the mechanism was explored by RNA-seq technology. GHI administered for 6 consecutive days significantly decreased body weight loss, infarction rate, neurological deficient scores, and neuron loss but improved rat survival percentage and regional cerebral blood flow after MCAO surgery. Furthermore, we identified inflammation as a vital process and C5AR1 as a vital target in GHI-mediated protection by using RNA-seq analysis. Further experiments confirmed that GHI decreased C5AR1, C5A, CASP3, 8-OHdG, and inflammatory factors such as IL-1ß, TNF, IL6, ICAM-1, MMP9, and MCP-1, and enhanced the expression of TIMP1, JAM-A, and laminin. Furthermore, GHI and its major components hydroxysafflower yellow A (HSYA) and aceglutamide (AG) enhanced cell viability and reduced LDH level and C5AR1 expression in a C5A-induced Neuro-2a cell damage model. In general, this study elucidated the mechanism of GHI against ischemic stroke by inhibiting inflammation and highlighted the potential important role of C5AR1 in ischemic stroke. This research provided new insights into the mechanism of GHI in resisting ischemic stroke and benefits of its clinical application.

12.
Biomed Pharmacother ; 150: 112948, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430394

RESUMO

Diabetic ulcer is a challenging complication of diabetes mellitus but current treatments cannot achieve satisfactory results. In this study, the effect of Huangbai liniment (HB) and berberine on the wound healing in high fat diet/streptozotocin injection induced diabetic rats was investigated by RNA-seq technology. HB topical treatment promoted wound healing in the diabetic patients and diabetic rats, and it affected multiple processes, of which IL-17 signalling pathway was of importance. Inhibiting IL-17a by its inhibitor or antibody remarkably facilitated wound healing and HB significantly repressed the high IL-17 expression and its downstream targets, including Cxcl1, Ccl2, Mmp3, Mmp9, G-CSF, IL1B and IL6, in diabetic wounds, promoted T-AOC, SOD activity and GSH levels; decreased the levels of nitrotyrosine and 8-OHdG; enhanced angiogenesis-related CD31, PDGF-BB and ANG1 expression; inhibited cleaved caspase-3 levels and promoted TIMP1 and TGFB1. Moreover, berberine (a major component in HB) repressed the IL-17 signalling pathway, and promoted wound healing in diabetes mellitus. This study highlights the strategy of targeting IL-17a in diabetic wounds, deepens the understanding of wound healing in diabetes mellitus in a dynamic way and reveals the characteristics of HB and berberine in promoting wound healing of type 2 diabetes mellitus.


Assuntos
Berberina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Humanos , Interleucina-17/farmacologia , Linimentos/farmacologia , Ratos , Estreptozocina/farmacologia , Cicatrização
13.
Oxid Med Cell Longev ; 2022: 2476493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069970

RESUMO

Diabetic ulcers bring about high morbidity and mortality in patients and cause a great economic burden to society as a whole. Since existing treatments cannot fulfil patient requirements, it is urgent to find effective therapies. In this study, the wound healing effect of topical notoginsenoside R1 (NR1) treatment on diabetic full-thickness wounds in type II diabetes mellitus (T2DM) was induced by the combination of a high-fat diet and streptozotocin (STZ) injection. NR1 significantly increased the wound closure rate, enhanced extracellular matrix (ECM) secretion, promoted collagen growth, increased platelet endothelial cell adhesion molecule-1 (CD31) expression, and decreased cleaved caspase-3 expression. RNA-Seq analysis identified ECM remodeling and inflammation as critical biological processes and Timp1 and Mmp3 as important targets in NR1-mediated wound healing. Further experiments showed that NR1-treated wounds demonstrated higher expression of tissue inhibitor of metalloproteinase 1 (TIMP1) and transforming growth factor-ß1 (TGFß1) and lower expression of matrix metallopeptidase 9 (MMP9), matrix metallopeptidase 3 (MMP3), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) than diabetic wounds. These investigations promote the understanding of the mechanism of NR1-mediated diabetic wound healing and provide a promising therapeutic drug to enhance diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Angiopatias Diabéticas/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Ginsenosídeos/uso terapêutico , Panax/química , Estreptozocina/efeitos adversos , Úlcera/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Ginsenosídeos/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
14.
Phytomedicine ; 92: 153613, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500302

RESUMO

BACKGROUND AND PURPOSE: Transcription factors (TFs) play a critical role in the cerebral ischemia/reperfusion injury (IRI). Panax notoginseng saponins (PNS) are extensively used in the treatment of acute cerebral ischemia in China, but the mechanism of their effects, especially at the TF level, remains unclear. In this study, a combination of transcriptomics, proteomics and network pharmacology analysis was used to identify the key TFs involved in the protection of PNS against middle cerebral artery occlusion (MCAO)-induced IRI. METHODS AND RESULTS: Sprague-Dawley rats which were subjected to 1.5 hours of MCAO-induced occlusionand then followed by reperfusion, were treated with PNS at a concentration of 36 mg/kg or 72 mg/kg daily for 7 days. PNS significantly decreased neurological deficient scores and infarction rate; prevented cerebral tissue damage; and reduced CASP3 activity, levels of TNF, IL1B and CCL2 after IRI. Through a combination of transcriptomics and proteomics, 9 critical TFs were identified, including Excision repair cross-complementing group 2 (ERCC2), Nuclear receptor subfamily 4 group A member 3 (NR4A3) and 7 other TFs. The targets of ERCC2 and NR4A3, such as Ubxn11, Ush2a, Numr2, Oxt, Ubxn11, Scrt2, Ttc34 and Lrrc23, were verified by using real-time PCR analysis. RNA-seq analyses indicated that PNS regulated nerve system development and inflammation, and the majority of the identified TFs were also involved in these processes. By using network pharmacology analysis, 73 chemical components in PNS were predicted to affect ERCC2, NR4A3 and 3 other identified TFs. CONCLUSION: ERCC2, NR4A3 and 7 other TFs were of importance in the protection of PNS against IRI. This study promoted the understanding of protective mechanism of PNS against cerebral IRI and facilitated the identification of possible targets of PNS.


Assuntos
Isquemia Encefálica , Panax notoginseng , Traumatismo por Reperfusão , Saponinas , Animais , Isquemia Encefálica/tratamento farmacológico , Proteômica , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/farmacologia , Fatores de Transcrição/genética , Transcriptoma
15.
Clin Sci (Lond) ; 135(4): 613-627, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491733

RESUMO

The high disability, mortality and morbidity of diabetic ulcers make it urgent to explore effective strategies for diabetic wound repair. TrxR1 plays a vital role in regulating redox homeostasis in various pathologies. In the present study, the effect of berberine (BBR) on diabetic wounds was investigated in streptozotocin (STZ)-induced diabetic rats and a high glucose (HG)-induced cell model, and the mechanism of BBR on TrxR1 was elucidated. BBR treatment remarkably accelerated wound healing and enhanced extracellular matrix (ECM) synthesis and significantly inhibited HG-induced HaCaT cell damage. Further analysis indicated that BBR activated TrxR1, suppressed its downstream JNK signaling, thereby inhibiting oxidative stress and apoptosis, promoted cell proliferation, down-regulated matrix metalloproteinase (MMP) 9 (MMP9) and up-regulated transforming growth factor-ß1 (TGF-ß1) and tissue inhibitors of MMP 1 (TIMP1), resulting in accelerated wound healing. Importantly, the enhancement of BBR on wound repair was further abolished by TrxR1 inhibitor. Moreover, in diabetic wounds induced by a combination of STZ injection and high-fat diet, BBR significantly increased wound closure rate and TrxR1 expression, and this was reversed by TrxR1 inhibitor. These data indicated that topical BBR treatment accelerated diabetic wound healing by activating TrxR1. Targeting TrxR1 may be a novel, effective strategy for restoring redox homeostasis and promoting diabetic wound healing.


Assuntos
Berberina/farmacologia , Tiorredoxina Redutase 1/metabolismo , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Berberina/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental , Dieta Hiperlipídica/efeitos adversos , Matriz Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Tiorredoxina Redutase 1/antagonistas & inibidores
16.
Front Pharmacol ; 11: 711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581779

RESUMO

BACKGROUND: Amomi fructus is a famous traditional Chinese medicine (TCM) that can exert beneficial effects during the treatment of gastrointestinal diseases and is used widely in China and other countries in Southeast Asia. However, the nonvolatile active ingredients that are present in the water extractions from A. fructus used to treat gastrointestinal diseases have yet to be elucidated. The goal of this study was to identify the nonvolatile active ingredients of A. fructus. METHODS: We used an in situ single-pass intestinal perfusion (SPIP) model to identify the active ingredients of A. fructus that play significant roles in gastrointestinal absorption. In addition, we developed a high-performance liquid chromatography (HPLC) method to identify key fractions in intestinal outflow perfusate. RESULTS: Nineteen components were identified in a water extraction from A. fructus; these exhibited different absorption capabilities in different intestinal segments. Of these, six components were determined by the newly developed HPLC method: catechin, vanillic acid, epicatechin, polydatin, isoquercitrin, and quercitrin. CONCLUSIONS: The current study aimed to identify the active ingredients present in water extractions prepared from A. fructus in a single-intestinal perfusate from rats. Our findings provide an experimental basis to explain the pharmacodynamic actions of A. fructus.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32351608

RESUMO

Mirabilishimalaica (Edgew) Heim (MH) is an important Tibetan medicine with demonstrated medicinal efficacy and promising developmental value. A previous study of MH was limited to vague morphological and microscopic descriptions, restricting its clinical application and further development as a medicine. The goal of this study was to comprehensively characterize wild and cultivated products of MH using macroscopic and microscopic identification using HPLC fingerprint. The results revealed that the cultivated and wild MH exhibited differences in macroscopic and microscopic characteristics and chemical components. This analysis can facilitate the establishment of a more comprehensive quality evaluation method for MH. These results provide the basis for clinical applications and the improvement of quality standards of MH as a step towards modernization of Tibetan medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA