RESUMO
OBJECTIVE: This scoping review aims to document Chinese Patent Medicines (CPMs) for Type 2 Diabetes Mellitus, explore whether CPMs can improve patients' health outcomes, and set priorities in addressing research gaps in this area. METHODS: Following the framework of PRISMA-SCr, we proposed the research questions based on PICOS principle, and searched the CPMs for T2DM from three drug lists, followed by a systematic search of the literature in eight databases from their inception to June 22, 2023. Then, we developed the eligibility criteria and systematically reviewed the relevant studies, retained the studies about CPMs for T2DM, extracted the related data, and identified the differences across studies in structured charts. RESULTS: A total of 25 types of CPMs were extracted from the three drug lists. Radix astragali appeared most frequently (19 times) among the herbal medicinal ingredients of CPMs. A total of 449 articles were included in the full-paper analysis ultimately, all of which were about 20 types of CPMs, and there were no related reports on the remaining five CPMs. Except about a quarter (25.39 %, 114/449) using CPMs alone, the remaining studies all involved the combination with oral hypoglycemics for T2DM. Biguanides are the most common drugs used in combination with CPMs (50.14 %, 168/335). Fasting plasma glucose (FPG) is the most frequently reported outcomes in efficacy evaluation (82.41 %, 370/449). CONCLUSION: There are a total of 25 types of CPMs currently available for T2DM patients. However, the volume of related evidence on these CPMs varies. It is necessary to standardize the combined use of CPMs and conventional medicine and select appropriate outcomes in future studies.
Assuntos
Clorobenzenos , Terapias Complementares , Diabetes Mellitus Tipo 2 , Medicamentos de Ervas Chinesas , Sulfetos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos sem Prescrição/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional ChinesaRESUMO
BACKGROUND: Sustained activation of hepatocyte growth factor (HGF)/c-MET signaling is a major driver of hepatocellular carcinoma (HCC) progression, but underlying mechanism is unclear. ArfGAP With SH3 Domain, Ankyrin Repeat And PH Domain 2 (ASAP2) can reportedly activate GTPases and promote receptor tyrosine kinase signaling. However, the exact role of ASAP2 in HCC, especially for c-MET activation, also remains elusive. METHODS: ASAP2 expression levels in HCC tissues and cells were quantified using qRT-PCR, western blot (WB) analysis, and immunohistochemistry staining. Cell counting kit-8 (CCK-8) and colony formation assays were performed to evaluate cell proliferation rates. Flow cytometry assays were conducted to assess apoptosis rates. Wound healing and Transwell assays were performed to determine cell migration and invasion capacities. Epithelial-mesenchymal transition (EMT)-related marker expression levels were also examined. Subcutaneous implantation and tail vein injection models were applied for in vivo growth and metastasis evaluations, respectively. Bioinformatics analyses of The Cancer Genome Atlas and STRING datasets were performed to explore ASAP2 downstream signaling. Co-immunoprecipitation and Cycloheximide chasing experiments were performed to assess protein-protein interactions and protein half-life, respectively. RESULTS: ASAP2 had higher expression levels in HCC tissues than in normal liver, and also predicted poor prognosis. Knocking down ASAP2 significantly impaired cell proliferation, migration, and invasion capacities, but promoted apoptosis in HCC cells in vitro. However, overexpression of ASAP2 achieved the opposite effects. In vivo experiments confirmed that ASAP2 could promote HCC cell growth and facilitate lung metastasis. Interestingly, ASAP2 was essential for triggering EMT. Gene Set Enrichment Analysis demonstrated that c-MET signaling was greatly enriched in ASAP2-high HCC cases. Additionally, c-MET signaling activity was significantly decreased following ASAP knockdown, evidenced by reduced c-MET, p-AKT, and p-ERK1/2 protein levels. Importantly, ASAP2 knockdown effectively attenuated HGF/c-MET signaling-induced malignant phenotypes. c-MET and ASAP2 expression levels were positively correlated in our cohort. Mechanistically, ASAP2 can directly bind to CIN85, thereby disrupting its interaction with c-MET, and can thus antagonize CIN85-induced c-MET internalization and lysosome-mediated degradation. Notably, knocking down CIN85 can rescue the observed inhibitory effects caused by ASAP2 knockdown. CONCLUSIONS: This study highlights the importance of ASAP2 in sustaining c-MET signaling, which can facilitate HCC progression.