Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(15): 8260-8270, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574288

RESUMO

The introduction of macroporous structures into three-way catalysts (TWCs) through polymer template-assisted spray drying has attracted attention because of its enhanced gas diffusion and catalytic performance. However, the surface charge effect of polymeric template components has not been investigated to control the structure of the TWC particles during synthesis. Thus, this study investigated the effect of template surface charges on the self-assembly behavior of TWC nanoparticles (NPs) during drying. The self-assembly of TWC NPs and polymer particles with different charges produced a hollow structure, whereas using the same charges generated a porous one. Consequently, the mechanism of particle self-assembly during drying and final structure particle formation is proposed in this study. Here, porous TWC particles demonstrated a faster oxidation of soot particles than that of hollow-structured particles. This occurred as a result of the larger contact area between the catalyst surface and the solid reactant. Our findings propose a fundamental self-assembly mechanism for the formation of different TWC structures, thereby enhancing soot oxidation performance using macroporous structures.

2.
ACS Appl Bio Mater ; 7(5): 3227-3237, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38627897

RESUMO

2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN) particles, an innovative biobased material derived from wood biomass, have garnered significant interest, particularly in the biomedical field, for their distinctive properties as biocompatible particle adsorbents. However, their microscopic size complicates their separation in liquid media, thereby impeding their application in various domains. In this study, superparamagnetic magnetite nanoparticles (NPs), specifically iron oxide Fe3O4 NPs with an average size of 15 nm, were used to enhance the collection efficiency of TOCN-Fe3O4 composite particles synthesized through spray drying. These composite particles exhibited a remarkable ζ-potential (approximately -50 mV), indicating their high stability in water, as well as impressive magnetization properties (up to 47 emu/g), and rapid magnetic responsiveness within 60 s in water (3 wt % Fe3O4 to TOCN, 1 T magnet). Furthermore, the influence of Fe3O4 NP concentrations on the measurement of the speed of magnetic separation was quantitatively discussed. Additionally, the binding affinity of the synthesized particles for proteins was assessed on a streptavidin-biotin binding system, offering crucial insights into their binding capabilities with specific proteins and underscoring their significant potential as functionalized biomedical materials.


Assuntos
Celulose , Nanopartículas Magnéticas de Óxido de Ferro , Teste de Materiais , Nanofibras , Tamanho da Partícula , Nanofibras/química , Celulose/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Nanopartículas de Magnetita/química
3.
ACS Appl Mater Interfaces ; 15(46): 54073-54084, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944066

RESUMO

In recent years, transportation-related air pollution has escalated into a global concern, necessitating the development of a three-way catalyst (TWC) technology to address harmful emissions. However, the efficiency of TWC's performance in mitigating these emissions has been hindered because of limited mass transfer efficiency within their structures. Thus, this study attempted to overcome the existing issue by synthesizing a series of macroporous TWC particles exhibiting various macropore sizes via a template-assisted spray process, aiming to achieve optimal mass transfer efficiency and catalytic performance. The synthesis incorporated various template particles (size of 67-381 nm) to obtain various macroporous structures. Thereafter, these macroporous particles were assessed for their carbon monoxide (CO) oxidation performance, revealing a substantial influence of the macropore size on the catalytic performance of TWC structures. Interestingly, among the investigated samples, those containing the smallest and largest macropores demonstrated the highest CO oxidation performances. Based on these results, a plausible reactant diffusion mechanism was proposed to explain the effect of the macropore size on the diffusion efficiency within the macroporous structures. This work may have significant implications in optimizing the macroporous structure to enhance catalytic performance in the gas purification process.

4.
Adv Mater ; 35(47): e2306648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840431

RESUMO

Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As  detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.

5.
Langmuir ; 39(39): 14063-14073, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738531

RESUMO

Silica-coated iron nickel (FeNi@SiO2) particles have attracted significant attention because of their potential applications in electronic devices. In this work, submicron-sized spherical FeNi@SiO2 particles with precisely controllable shell thickness were successfully synthesized for the first time using a swirler connector-assisted spray pyrolysis system, comprising a preheater, specific connector, and main heater. The results indicated that the thickness of the SiO2 shell can be tuned from 3 to 23 nm by adjusting the parameter conditions (i.e., preheater temperature, SiO2 supplied amount). Furthermore, our fabrication method consistently yielded a high coating ratio of more than 94%, indicating an excellent quality of the synthesized particles. Especially, to gain an in-depth understanding of the particle formation process of the FeNi@SiO2 particles, a plausible mechanism was also investigated. These findings highlight the importance of controlling the preheater and SiO2 supplied amount to obtain FeNi@SiO2 particles with desirable morphology and high coating quality.

6.
ACS Appl Bio Mater ; 6(7): 2725-2737, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37341240

RESUMO

The conventional pectin delivery systems in the colon are often impaired by a slow release rate. Nanostructured particles, especially porous ones, have gained popularity as drug delivery systems owing to their high mass transfer efficiency. In this research, porous pectin particles were synthesized as drug carriers (using indomethacin as a model drug) via template-assisted spray drying. Specific surface areas of the porous pectin particles have been improved by up to 203 m2 g-1 compared with nonporous particles (1 m2 g-1). The porous structure shortened the diffusion path and improved the release rate of drug molecules. Additionally, the predominant drug release mechanism from porous pectin particles is Fickian diffusion, which is different from the combination of erosion and diffusion mechanism observed for nonporous particles. As a result, these porous drug-loaded pectin particles demonstrated rapid drug release rates of up to three times faster than nonporous particles. Control of the release rate could be achieved by changing the porous structure of the particles. This strategy is an efficient means to synthesize porous particles allowing rapid drug release into the colonic target.


Assuntos
Indometacina , Pectinas , Indometacina/química , Pectinas/química , Porosidade , Sistemas de Liberação de Medicamentos , Colo
7.
Langmuir ; 39(22): 7783-7792, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37231653

RESUMO

Mass transfer is an essential process that can extend the performance and utilization of nanoporous materials in various applications. Therefore, improving mass transfer in nanoporous materials has always attracted much interest, and macroporous structures are currently being studied to enhance mass transfer performance. The introduction of macroporous structures into three-way catalysts (TWC), which are widely utilized to control the emission of polluted gases from vehicles, provides the potential to enhance their mass transfer property and catalytic performance. However, the formation mechanism of macroporous TWC particles has not yet been investigated. On the other hand, the influence of the framework thickness of the macroporous structure on the mass transfer enhancement is still unclear. Therefore, this report investigates the particle formation and framework thickness of the macroporous TWC particles synthesized using the template-assisted aerosol process. The formation of macroporous TWC particles was precisely controlled and investigated by altering the size and concentration of the template particles. The template concentration played a crucial role in maintaining the macroporous structure and controlling the framework thickness between the macropores. Based on these results, a theoretical calculation showing the influence of template concentration on the particle morphology and framework thickness was developed. The final results showed that increasing the template concentration can positively affect the nanoporous material's framework thickness reduction and mass transfer coefficient improvement.

8.
J Colloid Interface Sci ; 630(Pt B): 134-143, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327717

RESUMO

Porous particles composed of 2,2,6,6-tetramethylpiperidinyl-1-oxyl-oxidized cellulose nanofiber (TOCN) as building block, i.e., porous TOCN particles, are attracting attention due to their environmental friendliness, superior properties, such as easy handling, large surface area, and high adsorption capacity. However, the instability of TOCNs in aqueous environments limits their applications. An effective solution to improve water resistance of TOCN particles is to reduce the hydrophilicity of TOCNs by forming chemical bonds with a cross-linker. In this study, Carbodilite, a common, easy-to-use, commercially available cross-linker with carbodiimide groups, was used to investigate a chemical cross-linking strategy for porous TOCN particles prepared by spray drying. The water resistance of cross-linked TOCN particles was evaluated through morphological observation by SEM images. The presence of polycarbodiimide significantly increased water resistance of cross-linked TOCN particles up to 24 h. This study demonstrates the trade-off between water resistance and adsorption efficiency according to cross-linker concentrations. These data are useful for interface science of TOCNs in liquids, assisting in controlling specific properties of porous TOCN particles for particular applications in adsorption and separation.


Assuntos
Celulose Oxidada , Nanofibras , Nanofibras/química , Celulose/química , Adsorção , Porosidade , Água , Secagem por Atomização , Óxidos N-Cíclicos/química , Celulose Oxidada/química
9.
Langmuir ; 38(11): 3540-3552, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258982

RESUMO

A green synthetic strategy to design biomass-derived porous carbon electrode materials with precisely tailored structure and morphology has always been a challenging goal because these materials can fulfill the demands of next-generation supercapacitors and other electrochemical devices. Potassium hydroxide (KOH) is extensively utilized as an activator since it can produce porous carbon with high specific surface area and well-developed porous channels. The exploitation of sodium hydroxide (NaOH) as an activating agent is less referenced in the literature, although it offers some advantages over KOH in terms of low cost, less corrosiveness, and simple handling procedure, all of which are appealing particularly from an industrial viewpoint. The motivation for this present study is to fabricate porous carbon spheres in a sustainable manner via a spray drying approach followed by a carbonization process, using Kraft lignin as the carbon precursor and NaOH as an alternative activation agent instead of the high-cost and high-corrosive KOH for the first time. The structure of carbon particles can be accurately transitioned from a compact to hollow structure, and the surface textural properties can be easily tuned by altering the NaOH concentration. The obtained porous carbon spheres were applied as highly packed thin film electrode materials for supercapacitor devices. The specific capacitance value of porous carbon spheres with a highly compact structure (high packing density) is 66.5 F g-1, which is higher than that of commercial activated carbon and other biomass-derived carbon. This work provides a green processing for producing low-cost and environment-friendly porous carbon spheres from abundant Kraft lignin and important insight for selecting NaOH as an activator to tailor the morphology and structure, which represents an economical and sustainable approach for energy storage devices.


Assuntos
Lignina , Eletrodos , Porosidade , Hidróxido de Sódio
10.
ACS Appl Mater Interfaces ; 14(12): 14435-14446, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302745

RESUMO

There has been much interest in developing protein adsorbents using nanostructured particles, which can be engineered porous materials with fine control of the surface and pore structures. A significant challenge in designing porous adsorbents is the high percentage of available binding sites in the pores owing to their large surface areas and interconnected pore networks. In this study, continuing the idea of using porous materials derived from natural polymers toward the goal of sustainable development, porous pectin particles are reported. The template-assisted spray drying method using calcium carbonate (CaCO3) as a template for pore formation was applied to prepare porous pectin particles. The specific surface area was controlled from 177.0 to 222.3 m2 g-1 by adjusting the CaCO3 concentration. In addition, the effects of a macroporous structure, the specific surface area, and an interconnected pore network on the protein (lysozyme) adsorption capacity and adsorption mechanism were investigated. All porous pectin particles performed rapid adsorption (∼65% total capacity within 5 min) and high adsorption capacity, increasing from 1543 to the highest value of 2621 mg g-1. The results are attributed to the high percentage of available binding sites located in the macropores owing to their large surface areas and interconnected pore networks. The macroporous particles obtained in this study showed a higher adsorption capacity (2621 mg g-1) for lysozyme than other adsorbents. Moreover, the rapid uptake and high performance of this material show its potential as an advanced adsorbent for various macromolecules in the food and pharmaceutical fields.


Assuntos
Pectinas , Proteínas , Adsorção , Polímeros , Porosidade
11.
Langmuir ; 37(14): 4256-4266, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33780254

RESUMO

Many types of porous particles containing inorganic and organic substances, such as carbon, metals, metal oxides, inorganic-organic hybrids, and polymers, have been developed. However, natural polymer-derived particles are relatively rare. To our knowledge, this report describes the first synthetic method for obtaining meso-/macroporous particles made from pectin, which is a natural polymer with a wide range of biological activities suitable for active substance support applications. These porous particles were prepared using a template-assisted spray-drying method, followed by a chemical etching process. An organic template [i.e., poly(methyl methacrylate) (PMMA)] or an inorganic template [i.e., calcium carbonate (CaCO3)] was used to evaluate the resulting formation of macroporous structures in the pectin particles. Furthermore, the concentration of the templates in the precursor solution was varied to better understand the mechanism of porous pectin particle formation. The results showed that the final porous particles maintained the characteristic properties of pectin. The differences between the two templates resulted in two distinct types of porous particles that differed in their particle morphologies (i.e., spherical or wrinkled), particle sizes (ranging from 3 to 8 µm), pore sizes (ranging from 80 to 350 nm), and pore volume (ranging from 0.024 to 1.40 cm3 g-1). Especially, the porous pectin particles using the CaCO3 template have a significantly high specific surface area of 171.2 m2 g-1, which is 114 times higher than that of nonporous pectin particles. These data demonstrated the potential for using PMMA and CaCO3 templates to control and design desired porous materials.

12.
J Colloid Interface Sci ; 589: 252-263, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33460856

RESUMO

The tailored synthesis of carbon particles with controllable shapes and structures from biomass as a raw material would be highly beneficial to meet the demands of various applications of carbon materials from the viewpoint of sustainable development goals. In this work, the spherical carbon particles were successfully synthesized through a spray drying method followed by the carbonization process, using Kraft lignin as the carbon source and potassium hydroxide (KOH) as the activation agent. As the results, the proposed method successfully controlled the shape and structure of the carbon particles from dense to hollow by adjusting the KOH concentration. Especially, this study represents the first demonstration that KOH plays a crucial role in the formation of particles with good sphericity and dense structures. In addition, to obtain an in-depth understanding of the particle formation of carbon particles, a possible mechanism is also investigated in this article. The resulting spherical carbon particles exhibited dense structures with a specific surface area (1233 m2g-1) and tap density (1.46 g cm-3) superior to those of irregular shape carbon particles.

13.
J Colloid Interface Sci ; 571: 378-386, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220680

RESUMO

Hollow silica particles are desirable for numerous applications, however, designing hollow silica materials with varying hollow structures and shapes remains a significant challenge. Herein, a strategy for the precisely controlled synthesis of hexagonal-shaped hollow silica plate (HHSP) particles was successfully prepared via a sol-gel method at room temperature, using tetraethyl orthosilicate (TEOS) as a silica precursor and zinc oxide (ZnO) particles as a colloidal template. The effect of reaction time was carried out to control the structure and morphology of HHSP particles, and the thickness of silica shell can be tuned in the range from 12.2 to 43.2 nm by adjusting the TEOS/ZnO molar ratios. In addition, the polymer/HHSP composite thin films were prepared using poly(methyl methacrylate) (PMMA) matrix and surface modified HHSP particles by grafting silane coupling agents. High transmittance values were observed (>95%) for the composite thin films (5 µm in thickness, 0.1-1.0 wt% HHSP) in the ultraviolet and visible regions. Furthermore, the refractive index of HHSP particles was observed to be 1.28, which is significantly lower than dense silica (n = 1.46). These results suggest that the approach adopted herein will open up opportunities for the development of a new generation of film materials with a low refractive index.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA