Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1412693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076970

RESUMO

Background: Esophageal cancer (ESCA) is one of the most common tumors in the world, and treatment using neoadjuvant therapy (NT) based on radiotherapy and/or chemotherapy has still unsatisfactory results. Neoadjuvant immunochemotherapy (NICT) has also become an effective treatment strategy nowadays. However, its impact on the tumor microenvironment (TME) and regulatory mechanisms on T cells and NK cells needs to be further elucidated. Methods: A total of 279 cases of ESCA who underwent surgery alone [non-neoadjuvant therapy (NONE)], neoadjuvant chemotherapy (NCT), and NICT were collected, and their therapeutic effect and survival period were compared. Further, RNA sequencing combined with biological information was used to analyze the expression of immune-related genes. Immunohistochemistry, immunofluorescence, and quantitative real-time PCR (qRT-PCR) were used to verify the activation and infiltration status of CD8+ T and CD16+ NK cells, as well as the function and regulatory pathway of killing tumor cells. Results: Patients with ESCA in the NICT group showed better clinical response, median survival, and 2-year survival rates (p < 0.05) compared with the NCT group. Our RNA sequencing data revealed that NICT could promote the expression of immune-related genes. The infiltration and activation of immune cells centered with CD8+ T cells were significantly enhanced. CD8+ T cells activated by PD-1 inhibitors secreted more IFN-γ and cytotoxic effector factor cells through the transcription factor of EOMES and TBX21. At the same time, activated CD8+ T cells mediated the CD16+ NK cell activation and secreted more IFN-γ to kill ESCA cells. In addition, the immunofluorescence co-staining results showed that more CD276+ tumor cells and CD16+ NK cells were existed in pre-NCT and pre-NICT group. However, CD276+ tumor cells were reduced significantly in the post-NICT group, while they still appeared in the post-NCT group, which means that CD16+ NK cells can recognize and kill CD276+ tumor cells after immune checkpoint blocker (ICB) treatment. Conclusion: NICT can improve the therapeutic effect and survival period of resectable ESCA patients. NICT could promote the expression of immune-related genes and activate CD8+ T and CD16+ NK cells to secrete more IFN-γ to kill ESCA cells. It provides a theoretical basis and clinical evidence for its potential as an NT strategy in ESCA.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Esofágicas , Células Matadoras Naturais , Terapia Neoadjuvante , Receptores de IgG , Microambiente Tumoral , Humanos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/mortalidade , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Terapia Neoadjuvante/métodos , Masculino , Feminino , Receptores de IgG/metabolismo , Receptores de IgG/genética , Linfócitos T CD8-Positivos/imunologia , Pessoa de Meia-Idade , Microambiente Tumoral/imunologia , Idoso , Proteínas Ligadas por GPI/metabolismo , Resultado do Tratamento , Imunoterapia/métodos , Adulto , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
2.
Adv Mater ; 35(47): e2304005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37547949

RESUMO

Chronic wounds have become a significant threat to people's physical and mental health and have increased the burden of social medical care. Intelligent wound dressing (IWD) with wound condition monitoring and closed-loop on-demand drug therapy can shorten the healing process and alleviate patient suffering. However, single-function wound dressings cannot meet the current needs of chronic wound treatment. Here, a wearable IWD consisting of wound exudate management, sensor monitoring, closed-loop therapy, and flexible circuit modules is reported, which can achieve effective synergy between wound exudate management and on-demand wound therapy. The dressing is attached to the wound site, and the wound exudate is spontaneously pumped into the microfluidic channel for storage. Meanwhile, the IWD can detect the state of the wound through the temperature and humidity sensor, and use this as feedback to control the liquid metal (LM) heater through a smartphone, thereby realizing the on-demand drug release from the hydrogel. In a mouse model of infected wounds, IWD accelerates wound healing by reducing inflammatory responses, promoting angiogenesis and collagen deposition.


Assuntos
Bandagens , Infecção dos Ferimentos , Animais , Camundongos , Humanos , Cicatrização , Exsudatos e Transudatos
3.
Cell Death Differ ; 30(4): 922-937, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36750717

RESUMO

The DNA damage response (DDR) plays crucial roles in cancer prevention and therapy. Poly(ADP-ribose) polymerase 1 (PARP1) mediates multiple signal transduction in the DDR as a master regulator. Uncovering the regulatory factors of PARP1 contributes to a more comprehensive view of tumorigenesis and treatment strategies. Here, we reveal that MARVELD1 acts as a mediator of DDR to perform early events and maintain genome stability. Mechanistically, PARP1 PARylates MARVELD1 at D102, D118 and D130, and in turn, MARVELD1 stabilizes PARP1 by enhancing NAA50-mediated acetylation, thus forming a positive feedback loop. MARVELD1 knockout mice and their embryo fibroblasts exhibit genomic instability and shorter half-life of PARP1. Moreover, MARVELD1 partnering with PARP1 facilitates resistance to genotoxic drugs and disrupts PARP inhibitor (PARPi) effect in PDX model of colorectal cancer (CRC). Overall, our results underline the link between MARVELD1 and PARP1 in therapeutic resistance based on DDR and provide new insights for clinical tumor therapy of PARPi.


Assuntos
Dano ao DNA , Instabilidade Genômica , Animais , Camundongos , Carcinogênese , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA