Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 312: 114904, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344874

RESUMO

Allelochemicals are widely accepted as promising algaecide to mitigate Microcystis-dominated cyanobacterial blooms (MCBs). Allelopathic algicidal effect of single luteolin or kaempferol against Microcystis had been confirmed, but their joint effect against Microcystis was unclear. This study comprehensively explored time-dependent joint effect and mechanisms of luteolin and kaempferol on Microcystis growth during 14 day-test. The 50%-inhibitory threshold of their mixture (IC50 mix) was verified as 4.872 and 5.211 mg/L at equitoxic ratio, and 5.167 and 4.487 mg/L at equivalent ratio, respectively, on day 8 and 14. Using toxicity unit, isobologram and predictive models, results revealed that luteolin and kaempferol at equivalent ratio interacted additively at lower, median and higher dosages, while at equitoxic ratio interacted additively at lower dosage but synergistically at median and higher dosages in Microcystis on day 8 and 14, implying that their equitoxic mixture posed better algicidal effect against Microcystis. Various dosages of equitoxic mixture concurrently decreased aqueous and total microcystins (MCs) contents along test. Thus, luteolin and kaempferol could be jointly applied as high-efficacy and eco-safe algaecide with declined MCs pollution risks. As mixture dosage elevated, more strongly weakened cellular MCs retention and inhibited cellular photosynthetic pigments content during late stage, as well as decreased aqueous MCs content long test, jointly explained increasing growth inhibition ratio with rising mixture dosage. Yet, cell damage was gradually repaired due to early stimulated antioxidant defense at each mixture dosage, thus cell damage might not be a major reason for inhibited growth under mixture stress. This study provided novel insights and guidance to coupled application of luteolin and kamepferol for mitigating MCBs and decreasing MCs pollution risks.


Assuntos
Herbicidas , Microcystis , Quempferóis/farmacologia , Luteolina/farmacologia , Microcistinas
2.
Ecotoxicol Environ Saf ; 222: 112508, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34284326

RESUMO

This study determined time-dependent IC50 and confirmed 3.5 mg/L as IC50 value for kaempferol inhibiting toxigenic Microcystis growth, based on which algicidal effects and mechanisms against toxigenic Microcystis exposed to various kaempferol doses (0.5-2 × IC50) were explored along 14 day-test. Results showed that growth inhibition ratio (GIR) almost elevated with increasing kaempferol dose, and at each dose GIR elevated firstly and fluctuated around 17.8%- > 40%, 53.6%-65.6% and 84.8%-89.3% at 1.75, 3.5 and 7 mg/L kaempferol during mid-late stage, respectively. With rising kaempferol dose, photosynthetic pigments contents (chlorophyll-a, phycobiliproteins), antioxidant response (superoxide dismutase and catalase (CAT) activities, glutathione (GSH) contents) and microcystins (MCs) production were almost increasingly stimulated as cellular protective responses during early-mid stage. However, these parameters (excluding CAT and GSH) were almost increasingly inhibited at late stage by prolonged stress and Microcystis cell was still more severely damaged as dose elevated along test, which could be reasons for increasing GIR with rising kamepferol dose. Persistent stimulation of CAT and GSH at each dose could alleviate cell damage until late stage, thus GIR no longer increased at late stage at each kaempferol dose. Moreover, fewer MCs release under kaempferol stress than control suggested kaempferol as eco-safe algaecide for migrating toxigenic Microcystis-dominated blooms (MCBs) and decreasing MCs risks. Compared with our previous data for luteolin inhibiting toxigenic Microcystis, this study supported formerly-proposed 'flavonoids structure - algicidal activity' relationship that the only OH-location difference between kaempferol and luteolin could affect algicidal activity and mechanisms against toxigenic Microcystis. Also, kaempferol and luteolin was revealed to exert additive effect on toxigenic Microcystis growth at equitoxic ratio. Our findings gave novel algicidal scenario of flavonoids and were greatly implicated in eco-friendly migrating toxigenic MCBs.


Assuntos
Microcystis , Antioxidantes , Clorofila A , Quempferóis/farmacologia , Microcistinas/toxicidade , Superóxido Dismutase
3.
Ecotoxicol Environ Saf ; 196: 110540, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251950

RESUMO

By testing time-dependent IC50 of luteolin against Microcystis growth, this study revealed 6.5 mg/L as nearly IC50 value during prolonged stress until day 14, and explored chlorophyll-a (CLA) and phycobiliproteins (PBPs) contents, antioxidant responses and microcystin (MC)-production/-release dynamics at rising luteolin doses (0.5~2-fold IC50). Growth inhibition ratio (GIR) generally rose at rising luteolin dose, while at each dose GIR firstly increased and then leveled off or dropped. In early stage, CLA, allophycocyanin (APC), phycoerythrin (PE) and glutathione (GSH) contents, and superoxide dismutase (SOD) and catalase (CAT) activities, were increasingly stimulated at rising luteolin dose to enhance energy yield and antioxidant defense, but Microcystis was damaged more severely at rising dose, due to stress-repair imbalance. Such more severe damage in early stage, coupled with stronger PBPs-inhibition in mid-late stage, at rising dose could jointly account for rising GIR at rising dose. The CAT/GSH-stimulation persisting until late stage could alleviate cell damage in late stage, which explained for why GIR no longer increased in late stage at each luteolin dose. Besides, more MCs were produced and retained in cell to exert protective roles against luteolin-stress in early stage, but intracellular MCs decreased following inhibited MC-production by prolonged stress to decrease cell protectant. Extracellular MCs detection showed that less MCs amount existed in water phase than control along luteolin-stress, implying luteolin as eco-friendly algaecide with promising potential to remove MPM blooms and MC-risks. This is the first study to reveal the effect of various luteolin doses on MC-production/release and PBP-synthesis dynamics of Microcystis during prolonged stress. The findings shed novel views in anti-algal mechanisms of luteolin, and provided direct evidence for luteolin applied as safe agent to remediate Microcystis-dominant blooms.


Assuntos
Luteolina/farmacologia , Microcistinas/biossíntese , Microcystis/efeitos dos fármacos , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Glutationa/metabolismo , Microcystis/enzimologia , Microcystis/crescimento & desenvolvimento , Microcystis/metabolismo , Ficobiliproteínas/metabolismo , Ficocianina/metabolismo , Superóxido Dismutase/metabolismo
4.
Bioresour Technol ; 247: 794-803, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30060415

RESUMO

Diverse biochars produced from various feedstock sources (i.e., plant- and animal-wastes) at different pyrolysis temperatures (PTs) were characterized for their structural properties and sorption behaviors of aqueous microcystin-LR (MC-LR). Results indicated that MC-LR sorption capability of tested biochars varied as a function of biochar structural properties. Sorption mechanisms involved electrostatic attraction, pore-filling, hydrogen-bonding effect and π-π electron donor-acceptor interaction, but predominant mechanisms varied for different biochars. At the same PT (300 or 600°C), chicken manure-derived biochars (CMBs) exhibited stronger MC-LR sorption than others, with sorption coefficient (Kd) of 6.321-15.529Lg-1 and 6.354-8.294Lg-1 at aqueous equilibrium concentration (Ce) of 40 and 200µgL-1, respectively. Higher mesoporosity, the point of zero charge and total surface groups concentration related to higher ash content of CMBs, which might be indispensable for enhancing MC-LR sorption. This study suggested that CMBs have great potential as low-cost sustainable sorbents to abate MC-LR contamination.


Assuntos
Carvão Vegetal , Microcistinas/química , Adsorção , Animais , Toxinas Marinhas , Temperatura , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA