Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2405433, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007283

RESUMO

Collective excitations including plasmons, magnons, and layer-breathing vibration modes emerge at an ultralow frequency (<1 THz) and are crucial for understanding van der Waals materials. Strain at the nanoscale can drastically change the property of van der Waals materials and create localized states like quantum emitters. However, it remains unclear how nanoscale strain changes collective excitations. Herein, ultralow-frequency tip-enhanced Raman spectroscopy (TERS) with sub-10 nm resolution under ambient conditions is developed to explore the localized collective excitation on monolayer semiconductors with nanoscale strains. A new vibrational mode is discovered at around 12 cm-1 (0.36 THz) on monolayer MoSe2 nanobubbles and it is identified as the radial breathing mode (RBM) of the curved monolayer. The correlation is determined between the RBM frequency and the strain by simultaneously performing deterministic nanoindentation and TERS measurement on monolayer MoSe2. The generality of the RBM in nanoscale curved monolayer WSe2 and bilayer MoSe2 is demonstrated. Using the RBM frequency, the strain of the monolayer MoSe2 on the nanoscale can be mapped. Such an ultralow-frequency vibration from curved van der Waals materials provides a new approach to study nanoscale strains and points to more localized collective excitations to be discovered at the nanoscale.

2.
Anal Chem ; 96(17): 6550-6557, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38642045

RESUMO

There is growing interest in developing a high-performance self-supervised denoising algorithm for real-time chemical hyperspectral imaging. With a good understanding of the working function of the zero-shot Noise2Noise-based denoising algorithm, we developed a self-supervised Signal2Signal (S2S) algorithm for real-time denoising with a single chemical hyperspectral image. Owing to the accurate distinction and capture of the weak signal from the random fluctuating noise, S2S displays excellent denoising performance, even for the hyperspectral image with a spectral signal-to-noise ratio (SNR) as low as 1.12. Under this condition, both the image clarity and the spatial resolution could be significantly improved and present an almost identical pattern with a spectral SNR of 7.87. The feasibility of real-time denoising during imaging was well demonstrated, and S2S was applied to monitor the photoinduced exfoliation of transition metal dichalcogenide, which is hard to accomplish by confocal Raman spectroscopy. In general, the real-time denoising capability of S2S offers an easy way toward in situ/in vivo/operando research with much improved spatial and temporal resolution. S2S is open-source at https://github.com/3331822w/Signal2signal and will be accessible online at https://ramancloud.xmu.edu.cn/tutorial.

3.
Chem Sci ; 13(46): 13829-13835, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544733

RESUMO

Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research.

4.
ACS Nano ; 16(3): 4786-4794, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224974

RESUMO

Defects can locally tailor the electronic properties of 2D materials, including the band gap and electron density, and possess the merit for optical and electronic applications. However, it is still a great challenge to realize rational defect engineering, which requires quantitative study of the effect of defects on electronic properties under ambient conditions. In this work, we employed tip-enhanced photoluminescence (TEPL) spectroscopy to obtain the PL spectra of different defects (wrinkle and edge) in mechanically exfoliated thin-layer transition metal dichalcogenides (TMDCs) with nanometer spatial resolution. We quantitatively obtained the band gap and electron density at defects by analyzing the wavelength and intensity ratio of excitons and trions. We further visualized the strain distribution across a wrinkle and the edge-induced reconstructive regions of the band gap and electron density by TEPL line scans. The doping effect on the Fermi level and optical performance was unveiled through comparative studies of edges on TMDC monolayers of different doping types. These quantitative results are vital to guide defect engineering and design and fabrication of TMDC-based optoelectronics devices.

5.
Anal Chem ; 92(18): 12548-12555, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32804479

RESUMO

Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip-sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)electrocatalysis.

6.
Analyst ; 144(4): 1394-1400, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575825

RESUMO

Leucine aminopeptidase (LAP), an important proteolytic enzyme, is closely associated with diverse physiological and pathological disorders such as liver injury and cancers. Hence, it is imperative to develop an effective method to detect LAP activity for early diagnosis of diseases. In this work, we report a novel SERS probe bis-s-s'-[(s)-2-amino-N-(3-thiophenyl)-Leu]. (b-(s)-ANT-Leu) with an l-leucine amide group, which can specially respond to LAP, to assay the LAP activity according to the SERS spectral changes between the probe molecule and its corresponding hydrolysis product resulting from the catalysis of LAP. This SERS approach features high selectivity on account of the specificity of the reaction combined with the instinctive fingerprinting ability of SERS and shows a good linear relationship in a wide range from 0.2 to 100 mU mL-1 with a detection limit as low as 0.16 mU mL-1. In addition, the SERS-based strategy can be competent for LAP activity detection in clinical patient serum samples and LAP inhibitor evaluation, demonstrating its great potential in the pathological analysis for diseases involving LAP and the screening of LAP inhibitors.


Assuntos
Leucina/análogos & derivados , Leucil Aminopeptidase/sangue , Sondas Moleculares/química , Análise Espectral Raman/métodos , Biomarcadores/sangue , Humanos , Leucina/química , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA