Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39021186

RESUMO

Cancer is the second leading cause of death globally. Despite some successes, conventional cancer treatments are insufficient to address the growing problem of drug resistance in tumors and to achieve efficient treatment outcomes. Therefore, there is an urgent need to explore new therapeutic options. Ferroptosis, a type of iron- and reactive oxygen species-dependent regulated cell death, has been closely associated with cancer development and progression. Non-coding RNAs (ncRNAs) are a class of RNAs that do not code for proteins, and studies have demonstrated their involvement in the regulation of ferroptosis in cancer. This review aims to explore the molecular regulatory mechanisms of ncRNAs involved in ferroptosis in cancer and to emphasize the feasibility of ferroptosis and ncRNAs as novel therapeutic strategies for cancer. We conducted a systematic and extensive literature review using PubMed, Google Scholar, Web of Science, and various other sources to identify relevant studies on ferroptosis, ncRNAs, and cancer. A deeper understanding of ferroptosis and ncRNAs could facilitate the development of new cancer treatment strategies.

2.
Anal Chem ; 96(16): 6356-6365, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588440

RESUMO

Renal fibrosis poses a significant threat to individuals suffering from chronic progressive kidney disease. Given the absence of effective medications for treating renal fibrosis, it becomes crucial to assess the extent of fibrosis in real time and explore the development of novel drugs with substantial therapeutic benefits. Due to the accumulation of renal tissue damage and the uncontrolled deposition of fibrotic matrix during the course of the disease, there is an increase in viscosity both intracellularly and extracellularly. Therefore, a viscosity-sensitive near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging probe, BDP-KY, was developed to detect aberrant changes in viscosity during fibrosis. Furthermore, BDP-KY has been applied to screen the effective components of herbal medicine, rhubarb, resulting in the identification of potential antirenal fibrotic compounds such as emodin-8-glucoside and chrysophanol 8-O-glucoside. Ultrasound, PA, and NIRF imaging of a unilateral uretera obstruction mice model show that different concentrations of emodin-8-glucoside and chrysophanol 8-O-glucoside effectively reduce viscosity levels during the renal fibrosis process. The histological results showed a significant decrease in fibrosis factors α-smooth muscle actin and collagen deposition. Combining these findings with their pharmacokinetic characteristics, these compounds have the potential to fill the current market gap for effective antirenal fibrosis drugs. This study demonstrates the potential of BDP-KY in the evaluation of renal fibrosis, and the two identified active components from rhubarb hold great promise for the treatment of renal fibrosis.

3.
Membranes (Basel) ; 14(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392678

RESUMO

The study objective was to field-validate the technical feasibility of a membrane- and adsorption-enhanced water gas shift reaction process employing a carbon molecular sieve membrane (CMSM)-based membrane reactor (MR) followed by an adsorptive reactor (AR) for pre-combustion CO2 capture. The project was carried out in two different phases. In Phase I, the field-scale experimental MR-AR system was designed and constructed, the membranes, and adsorbents were prepared, and the unit was tested with simulated syngas to validate functionality. In Phase II, the unit was installed at the test site, field-tested using real syngas, and a technoeconomic analysis (TEA) of the technology was completed. All project milestones were met. Specifically, (i) high-performance CMSMs were prepared meeting the target H2 permeance (>1 m3/(m2.hbar) and H2/CO selectivity of >80 at temperatures of up to 300 °C and pressures of up to 25 bar with a <10% performance decline over the testing period; (ii) pelletized adsorbents were prepared for use in relevant conditions (250 °C < T < 450 °C, pressures up to 25 bar) with a working capacity of >2.5 wt.% and an attrition rate of <0.2; (iii) TEA showed that the MR-AR technology met the CO2 capture goals of 95% CO2 purity at a cost of electricity (COE) 30% less than baseline approaches.

4.
Ann Med ; 55(2): 2286638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38056005

RESUMO

BACKGROUND: The clinical manifestations of maintenance haemodialysis (MHD) outpatients diagnosed with coronavirus disease 2019 (COVID-19) are highly heterogeneous. They are prone to progress to severe conditions, and they often require hospitalization. To better guide the management of MHD outpatients, this retrospective observational study assessed risk factors for hospitalization of MHD patients after a diagnosis of COVID-19. METHODS: The demographic data, comorbidities, laboratory indicators and imaging data of 128 MHD outpatients at our haemodialysis centre with confirmed COVID-19 infection from December 2022 to January 2023 were collected. The relationships between these factors and hospitalization of patients were analyzed. RESULTS: Among the 128 patients, 25 (19.53%) were hospitalized. One of the 25 inpatients was mechanically ventilated, and two of them died. Multivariate logistic regression analysis showed that the hospitalization rate was correlated with age, comorbid diabetes and peripheral blood lymphocyte count. CONCLUSION: Older age, comorbid diabetes and lower lymphocyte count are important risk factors for hospitalization of MHD outpatients after a diagnosis of COVID-19. Focusing on these factors may help in early identification of patients who may need to be admitted due to potential disease progression.


Assuntos
COVID-19 , Hospitalização , Falência Renal Crônica , Diálise Renal , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/terapia , Teste para COVID-19 , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/etiologia , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Diálise Renal/estatística & dados numéricos , Estudos Retrospectivos , Fatores de Risco , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/terapia , Assistência Ambulatorial
5.
J Agric Food Chem ; 71(48): 18780-18791, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991345

RESUMO

Quinoa is a nutrient-rich pseudocereal with a lower glycemic index and glycemic load. However, its therapeutic potency and underlying mechanism against insulin resistance (IR) have not been fully elucidated. In this work, network pharmacology was applied to screen IR targets and their related pathways. The efficacy and mechanism of black quinoa polyphenols (BQP) on IR improvement were evaluated and uncovered based on the IR model in vitro combined with molecular docking. Ten phenolic constituents of BQP were detected, and the network pharmacology results show that PI3K/Akt pathways are the main pathways in BQP against IR. The in vitro assay proved that BQP increases the glucose consumption and glycogen synthesis via upregulating insulin receptor substrate 1 (IRS1)/PI3K/Akt/glucose transporters (GLUTs) signaling pathways to alleviate IR. Rutin, resveratrol, and catechin show lower binding energy docking with IRS1, PI3K, Akt, and GLUT4 proteins, indicating better interactions. It might be an effective constituent against IR. Hence, BQP could become a potential functional food source for blood glucose management among insulin-resistant people.


Assuntos
Chenopodium quinoa , Resistência à Insulina , Humanos , Glucose/metabolismo , Resistência à Insulina/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Chenopodium quinoa/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Hep G2 , Simulação de Acoplamento Molecular , Transdução de Sinais , Insulina/metabolismo , Fenóis/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35469162

RESUMO

Gynura procumbens is a traditional herb and food extensively cultivated in China and Southeast Asian countries. In this work, the crude extract (CE) of G. procumbens was purified with macroporous resin to obtain the refined fraction, and its anti-inflammatory activity was compared with that of CE. Moreover, the detailed mechanisms of anti-inflammatory activity were also investigated for the first time. The results indicated that CE was more effective in anti-inflammatory activity and it could reduce the secretion of NO, TNF-α, and PGE2 via decreasing the iNOS, TNF-α, and COX-2 genes transcription and related proteins translation, which were associated with the inhibition of AP-1 and NF-κB nuclear translocation and downregulation of PI3K/Akt and MAPK signaling pathways. In conclusion, the extract of G. procumbens has a promising potential in inflammation-related disorders alleviation, and these findings could provide the basis for the comprehensive utilization of G. procumbens and the new functional food development.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35035506

RESUMO

Inflammation is generally considered a key risk factor in the progress of several chronic diseases, such as arthritis, gastritis, and hepatitis. Natural products with anti-inflammatory ability have played a great role in the process of overcoming these inflammatory diseases. In this study, we evaluated the anti-inflammatory activities of ten natural compounds derived from lotus seedpod and discovered (E)-9-octadecenoic acid ethyl ester (E9OAEE) inhibited the production of nitric oxide (NO) optimally in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Furthermore, we explored the effects of E9OAEE on inflammatory responses and the underlying mechanisms in LPS-induced RAW264.7 macrophages. The results indicated that E9OAEE significantly suppressed the production of NO, prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNFα) in a dose-dependent manner. The protein expression and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) were inhibited by pretreatment of E9OAEE. Furthermore, E9OAEE restrained the phosphorylation of mitogen-activated protein kinase (MAPKs) family members, ERK, P38, and JNK stimulated by LPS-treated for 30 min and prevented the nuclear translocation of nuclear factor-kappa B (NF-κB) prompted by LPS-treated for 6 h in RAW264.7 macrophages. Taken together, we discovered an anti-inflammatory component from lotus seedpod and identified E9OAEE attenuated the inflammatory response in LPS-induced RAW264.7 macrophages probably by regulating the activation of MAPKs and NF-κB signalling pathways, which would provide some base for the development of new anti-inflammatory drugs.

8.
J Chromatogr Sci ; 59(10): 971-977, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33860306

RESUMO

Four caffeoylquinic acid derivatives from the Gunura procumbens flowers (GPF) were successfully isolated and purified by high-speed counter-current chromatography (HSCCC). Ethyl acetate-methanol-water (3:1:3, v/v/v) was the optimum biphasic solvent system, which was selected by high-performance liquid chromatography (HPLC) and run on a preparative scale where the lower aqueous phase was used as the mobile phase with a head-to-tail elution mode. Chlorogenic acid (3.83 mg), Isochlorogenic acid A (6.51 mg), Isochlorogenic acid B (4.38 mg) and Isochlorogenic acid C (4.47 mg) were obtained for the first time in an one-step HSCCC separation from 800 mg of the crude extracts. The purities of four compounds were determined to be >95% by HPLC. Chemical structures of each isolated compounds were identified by nuclear magnetic resonance and electrospray ionization mass spectrometry methods. It is worth noting that all the four compounds were isolated here for the first time from GPF and this work confirms the effectiveness of HSCCC for the separation of compounds contained in complex samples, and provides a foundation for further exploitation of G. procumbens.


Assuntos
Distribuição Contracorrente , Ácido Quínico , Cromatografia Líquida de Alta Pressão , Flores , Ácido Quínico/análogos & derivados , Espectrometria de Massas por Ionização por Electrospray
9.
Sensors (Basel) ; 20(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937998

RESUMO

Recently, many video steganography algorithms based on the intra-prediction mode (IPM) have been adaptive steganography algorithms. These algorithms usually focus on the research about mapping rules and distortion functions while ignoring the fact that adaptive steganography may not be suitable for video steganography based on the intra-prediction mode; this is because the adaptive steganography algorithm must first calculate the loss of all cover before the first secret message is embedded. However, the modification of an IPM may change the pixel values of the current block and adjacent blocks, which will lead to the change of the loss of the following blocks. In order to avoid this problem, a new secure video steganography based on a novel embedding strategy is proposed in this paper. Video steganography is combined with video encoding. Firstly, the frame is encoded by an original encoder and all the relevant information is saved. The candidate block is found according to the relevant information and mapping rules. Then every qualified block is analyzed, and a one-bit message is embedded during intra-prediction encoding. At last, if the IPM of this block is changed, the values of the residual are modified in order to keep the optimality of the modified IPM. Experimental results indicate that our algorithm has good security performance and little impact on video quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA