Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
World J Radiol ; 16(8): 348-355, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39239244

RESUMO

BACKGROUND: The rare co-occurrence of oligodendroglioma and arteriovenous malformation (AVM) in the same intracranial location. CASE SUMMARY: In a 61-year-old man presenting with progressive headaches, is described in this case study. Preoperative multimodal imaging techniques (computed tomography, magnetic resonance imaging, magnetic resonance spectroscopy, digital subtraction angiography, and computed tomography angiography) were employed to detect hemorrhage, cystic and solid lesions, and arteriovenous shunting in the right temporal lobe. The patient underwent right temporal craniotomy for lesion removal, and postoperative pathological analysis confirmed the presence of oligodendroglioma (World Health Organization grade II, not otherwise specified) and AVM. CONCLUSION: The preoperative utilization of multimodal imaging examination can help clinicians reduce the likelihood of misdiagnosis or oversight of these conditions, and provides important information for subsequent treatment. This case supports the feasibility of craniotomy for the removal of glioma with AVM.

2.
J Agric Food Chem ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276097

RESUMO

Ulcerative colitis (UC) is a typical type of inflammatory bowl disease, which is accompanied by an increased risk of depression and anxiety-related psychological symptoms. Betaine is a naturally derived compound that can function as an anti-inflammatory drug and a neuromodulator. In-depth exploration of the potential role of betaine in treating UC-related depression and anxiety is crucial. This study aimed to elucidate the effects of betaine on UC-related depression and anxiety and clarify the underlying mechanisms. A dextran sulfate sodium (DSS)-induced mice model was established by 4% DSS drinking ad libitum for 7 days. The colonic injury was measured using hematoxylin-eosin (HE) staining and Alcian blue-periodic acid Schiff (AB-PAS) staining. Depression and anxiety-like behaviors were separately evaluated using a forced swimming test (FST), a tail suspension test (TST), a light-dark box test (LDBT), and an open field test (OFT). Immunohistochemistry was used to detect DNA damage and neurogenesis in the hippocampus. Western blotting was applied to detect the protein levels of macrophage polarization in mice colons and the alteration of mitochondrial dysfunction and the cGAS-STING pathway in the hippocampus. Betaine strongly alleviated mucosal structural disorder and mucin secretion reduction and promoted M2-macrophage polarization in the colon of DSS-treated mice. In addition, betaine could mitigate depression- and anxiety-like behaviors in DSS-treated mice, reduce the DNA damage and mitochondrial dysfunction, and inhibit the cGAS-STING signaling pathway. Our study reveals the antidepression/anxiety effects of betaine and further demonstrates the potential mechanism by which betaine inhibits DNA damage and mitochondrial dysfunction to block the cGAS-STING pathway, thereby repairing neurogenesis in the hippocampus.

3.
Cancer Lett ; 602: 217192, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39181433

RESUMO

PARPi is currently the most important breakthrough in the treatment of ovarian cancer in decades, and it has been integrated into the initial maintenance therapy for ovarian cancer. However, the mechanism leading to PARPi resistance remains unelucidated. Our study aims to screen novel targets to better predict and reverse resistance to PARPi and explore the potential mechanism. Here, we conducted a comparative analysis of differentially expressed genes between platinum-sensitive and platinum-resistant groups within the TCGA ovarian cancer cohort. The analysis indicated that lncRNA PART1 was significantly highly expressed in platinum-sensitive patients compared to platinum-resistant individuals in TCGA-OV cohort and further validated in the GEO dataset and Qilu hospital cohort. Moreover, the upregulation of PART1 was positively correlated with a favorable prognosis in ovarian cancer. Furthermore, in vitro and in vivo experiments showed that inhibition of PART1 conferred resistance to both cisplatin and PARP inhibitor and promoted cellular senescence. Senescent cells are more resistant to chemotherapeutics. RNA antisense purification and RNA immunoprecipitation assays revealed an interaction between PART1 and PHB2, a crucial mitophagy receptor. Knockdown of PART1 could promote the degradation of PHB2, impairing mitophagy and leading to cellular senescence. Rescue assays indicated that overexpression of PHB2 remarkably diminished the resistance to PARPi and cellular senescence caused by PART1 knockdown. PDX models were utilized to further confirm the findings. Altogether, our study demonstrated that lncRNA PART1 has the potential to serve as a novel promising target to reverse resistance to PARPi and improve prognosis in ovarian cancer.


Assuntos
Senescência Celular , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Cisplatino/farmacologia , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Proliferação de Células/efeitos dos fármacos
4.
J Nanobiotechnology ; 22(1): 474, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123234

RESUMO

The activation of ferroptosis presents a versatile strategy for enhancing the antitumor immune responses in cancer therapy. However, developing ferroptosis inducers that combine high biocompatibility and therapeutic efficiency remains challenging. In this study, we propose a novel approach using biological nanoparticles derived from outer membrane vesicles (OMVs) of Escherichia coli for tumor treatment, aiming to activate ferroptosis and stimulate the immune responses. Specifically, we functionalize the OMVs by anchoring them with ferrous ions via electrostatic interactions and loading them with the STING agonist-4, followed by tumor-targeting DSPE-PEG-FA decoration, henceforth referred to as OMV/SaFeFA. The anchoring of ferrous ions endows the OMVs with peroxidase-like activity, capable of inducing cellular lipid peroxidation by catalyzing H2O2 to •OH. Furthermore, OMV/SaFeFA exhibits pH-responsive release of ferrous ions and the agonist, along with tumor-targeting capabilities, enabling tumor-specific therapy while minimizing side effects. Notably, the concurrent activation of the STING pathway and ferroptosis elicits robust antitumor responses in colon tumor-bearing mouse models, leading to exceptional therapeutic efficacy and prolonged survival. Importantly, no acute toxicity was observed in mice receiving OMV/SaFeFA treatments, underscoring its potential for future tumor therapy and clinical translation.


Assuntos
Ferroptose , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Membrana Externa Bacteriana , Escherichia coli , Humanos , Nanopartículas/química , Feminino , Camundongos Endogâmicos BALB C , Peroxidação de Lipídeos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias do Colo/tratamento farmacológico , Íons
5.
Talanta ; 279: 126607, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067204

RESUMO

Water-soluble fluorescent chemosensors for lead ion are highly desirable in environmental detection and bioimagery. Based on a water-soluble pillar[5]arene WP5 and imidazolium terminal functionalized 2,2'-bibenzimidazole derivative BIHB, we report a host-guest charge transfer assembly BIHB-2WP5 for sensitive and selective detection of Pb2+ in pure aqueous media. As a result of its high electron-rich cavity, WP5 can bind electron-deficiency guest BIHB with various host/guest stoichiometry to easily tune the microtopography of assembly from nanoparticle to nanocube. In view of the good biocompatibility and sensitivity, the supramolecular assembly BIHB-2WP5 was used as a fluorescent probe for the detection of Pb2+ in living cells and a smartphone Pb2+ detection device was constructed for the in situ test.

6.
Mol Neurobiol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814536

RESUMO

Epilepsy is a common neurological disorder which can cause significant morbidity and mortality. N6-methyladenosine (m6A), the most common chemical epigenetic modification among mRNA post-transcriptional modifications, implicated in various physiological and pathological processes, but its role in epilepsy is still unknown. Here, we provide strong evidences in support of an association of m6A and its regulatory proteins with epilepsy. Our results indicated that the level of m6A was declined significantly in the dentate gyrus (DG) of hippocampus of pentylenetetrazol (PTZ)-induced seizure mice. Both the seizure-like behaviors and the excessive activation of DG area neuron were significantly mitigated after the administration of m6A agonist betaine. Mechanically, we found that both the m6A methyltransferase METTL14 and recognition protein YTHDC1 were decreased by PTZ stimulation, which might contribute to the reduced m6A level. Additionally, DG-specific over-expression of METTL14 or YTHDC1 by lentivirus injection could significantly ameliorate seizure-like behaviors and prevent the excessive activation of neuron in epilepsy mice induced by PTZ injection, which might be due to the normalized m6A level. Together, this study identified that METTL14/YTHDC1-mediated m6A modification could participate in seizure-like behaviors, which might provide m6A regulation as a potential and novel therapeutic strategy for epilepsy.

7.
Sheng Li Xue Bao ; 76(2): 289-300, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658377

RESUMO

Sepsis-associated encephalopathy (SAE) refers to diffuse brain dysfunction caused by sepsis, which is characterized by decreased attention, directional impairment, being prone to irritation, and in severe cases the patient will experience drowsiness and coma. The pathogenesis of SAE mainly includes neuroinflammation, damage of blood-brain barrier, cerebral vascular dysfunction, and neurometabolic changes, among which neuroinflammation is the core pathological process. Microglia are considered to be important immune cells of the central nervous system and play an important role in neuroinflammation. This article systematically describes the role of microglia in the development of SAE, and discusses the phenotype and related signaling pathways of microglia, in order to clarify the role of microglia in SAE and provide a theoretical basis for clinical treatment of SAE.


Assuntos
Microglia , Encefalopatia Associada a Sepse , Humanos , Encefalopatia Associada a Sepse/fisiopatologia , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Microglia/metabolismo , Microglia/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Transdução de Sinais , Sepse/complicações , Sepse/fisiopatologia , Doenças Neuroinflamatórias/etiologia
8.
Brain Res Bull ; 206: 110863, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145759

RESUMO

Chronic pain can induce not only nociceptive but also depressive emotions. A previous study demonstrated that betaine, a commonly used nutrient supplement, has an anti-nociceptive effect, but whether betaine can alleviate chronic pain-induced depressive emotion is elusive. Our current study found that betaine administration significantly eliminated complete Freund's adjuvant (CFA)-induced pain-related depressive-like behaviour. Mechanistically, betaine treatment inhibited microglia and astrocyte activation. Furthermore, betaine significantly promoted the transition of microglia from the M1 to the M2 phenotype, as well as the transition of astrocytes from the A1 to the A2 phenotype. Additionally, the release of pro-inflammatory factors such as IL-18, IL-1ß and IL-6 and anti-inflammatory factors such as IL-10 in the hippocampus induced by CFA were also reversed by betaine administration. Overall, betaine has therapeutic effects on pain-related depressive-like phenotypes caused by CFA, possibly through altering the polarization of microglia and astrocytes to reduce neuroinflammation.


Assuntos
Dor Crônica , Microglia , Camundongos , Animais , Betaína/efeitos adversos , Astrócitos , Adjuvante de Freund/toxicidade , Inflamação/genética
9.
Brain Behav ; 13(12): e3305, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37919236

RESUMO

INTRODUCTION: Epilepsy is one of the most common neurological diseases, while over one third of adults with epilepsy still have inadequate seizure control. Although mutations in salt-inducible kinases (SIKs) have been identified in epileptic encephalopathy, it is not known whether blocking SIKs can prevent pentylenetetrazole (PTZ)-induced seizures. METHODS: We first determined the time course of SIKs (including SIK 1, 2, and 3) in the hippocampus of PTZ treated mice. And then, we evaluated the effects of anti-epilepsy drug valproate acid (VPA) on the expression of SIK 1, 2, and 3 in the hippocampus of PTZ treated mice. Next, we investigated the effect of different dose of SIKs inhibitor YKL-06-061 on the epileptic seizures and neuronal activation by determining the expression of immediate early genes (IEGs) in the PTZ treated mice. RESULTS: We found that PTZ selectively induced enhanced expression of SIK1 in the hippocampus, which was blocked by VPA treatment. Notably, YKL-06-061 decreased seizure activity and prevented neuronal overactivity, as indicated by the reduced expression of IEGs in the hippocampus and prefrontal cortex. CONCLUSION: Our findings provide the first evidence that SIK1 affects gene regulation in neuronal hyperactivity, which is involved in seizure behavior. Targeting SIK1 through the development of selective inhibitors may lead to disease-modifying therapies that reduce epilepsy progression.


Assuntos
Epilepsia , Pentilenotetrazol , Camundongos , Animais , Pentilenotetrazol/farmacologia , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Epilepsia/tratamento farmacológico , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Hipocampo/metabolismo , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças
10.
Int J Pharm ; 647: 123543, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37879572

RESUMO

Currently, one of the main problems encountered in wound healing therapy is related to inefficient drug delivery. However, dissolving microneedles (DMNs) can be administered percutaneously to effectively deliver a drug to a deep wound area. Simvastatin (SIM) can promote wound healing, albeit its insolubility in water limits its application. Here, we designed a DMNs (SIM-NC@DMNs) drug delivery system loaded with SIM nanocrystals (SIM-NC) and evaluated its efficacy in wound healing. Based on our observations, the dissolution performance of insoluble SIM is significantly improved after the preparation of SIM-NC. For example, the saturation solubility of SIM-NC in deionized water and PBS increased by 150.57 times and 320.14 times, respectively. After the SIM-NC@DMNs are deeply inserted into the wound, the needle portion, which is composed of hyaluronic acid (HA), dissolves rapidly, and the SIM-NC loaded on the needle portion is efficiently released into the deep wound area for optimal therapeutic efficacy. The combination of NC and DMNs makes this system further effective for wound healing. Our cumulative work suggests that the newly developed SIM-NC@DMNs possess great potential in accelerating wound healing. By day 12 after treatment, the residual wound area in the Control group was 21.34 %, while the residual wound area in the SIM-NC@DMNs group was only 2.36 %. This result as well as provides certain evidence of its efficacy for wound healing therapy. The SIM-NC@DMNs drug delivery system may become an efficient treatment modality that promotes wound healing, with a promising potential in the field of wound healing research.


Assuntos
Nanopartículas , Pele , Sinvastatina , Administração Cutânea , Cicatrização , Sistemas de Liberação de Medicamentos , Água
11.
Eur J Pharmacol ; 960: 176122, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37863414

RESUMO

Ulcerative colitis is an inflammatory bowel disease with increasing prevalence and incidence. Current treatments for ulcerative colitis are not generally applicative and are often accompanied by side effects. IGF2 is an endogenous protein that plays roles in anti-inflammation and stemness maintenance, but little is known about its mechanism and function in the progression of ulcerative colitis. In this study, mouse recombinant IGF2 was used in a mouse model of ulcerative colitis established by DSS. IGF2 expression was reduced in colon tissues but not plasma of DSS-induced colitis mice. IGF2R expression was also decreased in colitis colons, which was then elevated by recombinant IGF2. Recombinant IGF2 alleviated colon injury in colitis, which was evaluated by colon shortening, body weight loss and DAI score. IGF2 treatment also relieved the inflammatory response in colitis, which was assessed by the spleen weight index, MPO activity and proinflammatory cytokine expression and was also detected in LPS-stimulated RAW264.7 cells in vitro. Moreover, IGF2R was predicted and further verified to interact with the Sting protein, and the cGAS-Sting pathway as a key pathway for stemness regulation, was upregulated in colonic colons, which was blocked by IGF2 treatment. Additionally, IGF2 treatment can maintain colonic stemness and further repair colonic tight junction function in DSS-induced colitis. In conclusion, IGF2/IGF2R downregulated the cGAS-Sting pathway to sustain colonic stemness and barrier integrity to protect against ulcerative colitis induced by DSS.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
12.
Chem Sci ; 14(34): 9145-9153, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37655041

RESUMO

Rechargeable 3D printed batteries with extraordinary electrochemical potential are typical contenders as one of the promising energy storage systems. Low-cost, high-safety, and excellent rechargeable aqueous alkaline batteries have drawn extensive interest. But their practical applications are severely hampered by poor charge carrier transfer and limited electrochemical activity at high loading. Herein, we report a unique structure-based engineering strategy in 3D porous frames using a feasible 3D printing technique and achieve 3D printed full battery devices with outstanding electrochemical performance. By offering a 3D porous network to provide prominently stereoscopic support and optimize the pore structure of electrodes, the overall charge carrier transport of engineered 3D printed Ni-Zn alkaline batteries (E3DP-NZABs) is greatly enhanced, which is directly demonstrated through a single-wired characterization platform. The obtained E3DP-NZABs deliver a high areal capacity of 0.34 mA h cm-2 at 1.2 mA cm-2, and an outstanding capacity retention of 96.2% after 1500 cycles is also exhibited with an optimal electrode design. Particularly, parameter changes such as a decrease in pore sizes and an increase in 3D network thickness are favorable to resultant electrochemical performance. This work may represent a vital step to promote the practical application progress of alkaline batteries.

13.
Nanotechnology ; 34(45)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37356433

RESUMO

Organic-inorganic hybrid perovskite nanocrystals have become a very widely used as semiconductor light-emitting materials. However, perovskite nanocrystals face stability challenges, which is a key factor hindering their application. In this paper, by introducing water into the synthesis of formamidinium lead bromide (FAPbBr3) perovskite, ultra-stable FAPbBr3@PbBr(OH) fluorescent material was prepared. The photoluminescence intensity of the material after the addition of water increased 2.9 times compared with that before the addition of water. The excellent green fluorescence emission was still maintained after four cycles of wash-dry treatment. Meanwhile, it also exhibits good ultraviolet and thermal stability. The above enhanced performance of FAPbBr3nanocrystals is attributed the protection of PbBr(OH). In addition, the prepared material can be used in anti-counterfeit patterns. The anti-counterfeit patterns have good color rendering and the luminous color has a high dependence on temperature. Both of these features make it very valuable for various fluorescent anti-counterfeiting labels.

14.
Mol Ther Nucleic Acids ; 32: 359-368, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37128278

RESUMO

In the early stage, N4-acetylcytidine (ac4C) was regarded as a conservative nucleoside present on tRNA and rRNA. Recently, studies have shown that ac4C also exists in human and yeast mRNA. N-Acetyltransferase-like protein 10 (NAT10) is the first enzyme to be found to catalyze ac4C production in eukaryotic RNA and has acetyltransferase activity and RNA-binding activity. Here, we first describe the structure and cellular localization of NAT10. Then, we conclude the active roles of NAT10 as the ac4C "writer" in mRNA stability and translation efficiency, oocyte maturation, bone remodeling, and fatty acid metabolism. With respect to disease, we focused on the promoting functions of NAT10 in proliferation, metastasis, and apoptosis in multiple tumors. The immune regulatory role of NAT10 in systemic lupus erythematosus and the maintenance role of NAT10 in virus RNA stability and replication in influenza A virus are also introduced. This review identifies NAT10 as a potential target for diagnosis, therapy, and prognosis in clinical application.

15.
Biosensors (Basel) ; 13(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37232898

RESUMO

Though monitoring blood glucose (BG) is indispensable for regulating diabetes, the frequent pricking of the finger by the commonly used fingertip blood collection causes discomfort and poses an infection risk. Since glucose levels in skin interstitial fluid (ISF) correlate with blood glucose levels, monitoring glucose in the skin ISF can be a viable alternative. With this rationale, the present study developed a biocompatible porous microneedle capable of rapid sampling, sensing, and glucose analysis in ISF in a minimally invasive manner, which can improve patient compliance and detection efficiency. The microneedles contain glucose oxidase (GOx) and horseradish peroxidase (HRP), and a colorimetric sensing layer containing 3,3',5,5'-tetramethylbenzidine (TMB) is on the back of the microneedles. After penetrating rat skin, porous microneedles harvest ISF rapidly and smoothly via capillary action, triggering the production of hydrogen peroxide (H2O2) from glucose. In the presence of H2O2, HRP reacts with TMB contained in the filter paper on the back of microneedles, causing an easily visible color shift. Further, a smartphone analysis of the images quickly quantifies glucose levels in the 50-400 mg/dL range using the correlation between color intensity and glucose concentration. The developed microneedle-based sensing technique with minimally invasive sampling will have great implications for point-of-care clinical diagnosis and diabetic health management.


Assuntos
Diabetes Mellitus , Glucose , Ratos , Animais , Glucose/análise , Glicemia/análise , Líquido Extracelular/química , Colorimetria/métodos , Peróxido de Hidrogênio , Porosidade , Pele/química
16.
Neuropharmacology ; 233: 109560, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37094770

RESUMO

Gonadotropin-releasing hormone (GnRH) is at the head of the neuroendocrine reproductive axis. However, the non-reproductive functions of GnRH expressed in various tissues, including hippocampus, are still not known. Here, we unveil a previously unknown effect of GnRH, which mediates depression-like behaviors through the modulation of microglia function during immune challenge. Specifically, we found that either systemic treatment with GnRH agonist or over-expression of endogenous hippocampal GnRH via viral tool abolished the depression-like behavior after LPS challenges in mice. And the anti-depressant of GnRH was dependent on the hippocampal GnRHR signaling, since antagonizing GnRHR by drug treatment or by hippocampal GnRHR knockdown could block the antidepressant-effect of GnRH agonist. Interestingly, we found that the peripheral GnRH treatment prevented the microglia activation mediated inflammation in the hippocampus of mice. In light of the research findings presented here, we propose that, at least in the hippocampus, GnRH appears to act on GnRHR to regulate higher order non-reproductive functions associated with the microglia mediated neuroinflammation. These findings also provide insights into the function and cross-talk of GnRH, a known neuropeptide hormone, in neuro-immune response.


Assuntos
Depressão , Lipopolissacarídeos , Masculino , Camundongos , Animais , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Hormônio Liberador de Gonadotropina/farmacologia , Transdução de Sinais , Antidepressivos/farmacologia
17.
Biomed Pharmacother ; 162: 114684, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058824

RESUMO

Photodynamic therapy (PDT) is a noninvasive technique that can be used to treat rheumatoid arthritis (RA) by irradiating photosensitizers with specific wavelengths of light to generate reactive oxygen species (ROS), thus leading to targeted cell necrosis. However, efficient delivery of photosensitizers with low side effects is a key issue. We developed a 5-aminolevulinic acid-loaded dissolving microneedle array (5-ALA@DMNA) that can locally and efficiently deliver photosensitizers for RA treatment by PDT. 5-ALA@DMNA was fabricated through a two-step molding process, which was characterized. The effects of 5-ALA-mediated PDT on RA fibroblast-like synoviocytes (RA-FLs) were investigated via in vitro experiments. Adjuvant arthritis rat models were established to evaluate the therapeutic effect of 5-ALA@DMNA-mediated PDT on RA. The results showed that 5-ALA@DMNA could penetrate the skin barrier and efficiently deliver photosensitizers. 5-ALA-mediated PDT can significantly inhibit the migration ability and selectively induce apoptosis of RA-FLs. Moreover, 5-ALA-mediated PDT had a significant therapeutic effect on rats with adjuvant arthritis, which may be related to the upregulation of interleukin (IL)- 4 and IL-10 and downregulation of TNF-α, IL-6, and IL-17. Thus, 5-ALA@DMNA-mediated PDT may be a potential therapy for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fotoquimioterapia , Ratos , Animais , Ácido Aminolevulínico , Fármacos Fotossensibilizantes , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Fotoquimioterapia/métodos
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(2): 252-259, 2023 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36999472

RESUMO

Inflammatory injury of the intestine is often accompanied by symptoms such as damage to intestinal mucosa, increased intestinal permeability, and intestinal motility dysfunction. Inflammatory factors spread throughout the body via blood circulation, and can cause multi-organ failure. Pyroptosis is a newly discovered way of programmed cell death, which is mainly characterized by the formation of plasma membrane vesicles, cell swelling until the rupture of the cell membrane, and the release of cell contents, thereby activating a drastic inflammatory response and expanding the inflammatory response cascade. Pyroptosis is widely involved in the occurrence of diseases, and the underlying mechanisms for inflammation are still a hot spot of current research. The caspase-1 mediated canonical inflammasome pathway of pyroptosis and caspase-4/5/8/11-mediated non-canonical inflammasome pathway are closely related to the occurrence and development of intestinal inflammation. Therefore, investigation of the signaling pathways and molecular mechanisms of pyroptosis in intestinal injury in sepsis, inflammatory bowel diseases, infectious enteristic, and intestinal tumor is of great significance for the prevention and treatment of intestinal inflammatory injury.


Assuntos
Inflamassomos , Piroptose , Humanos , Inflamassomos/metabolismo , Apoptose , Caspase 1 , Inflamação
19.
Neuroscience ; 517: 117-127, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805006

RESUMO

Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis and is characterized by hyperneuroinflammation. NLRP3 inflammasome-mediated pyroptosis can induce an inflammatory cascade response and plays a key role in SAE. TRPV4 is involved in the hyperinflammatory response associated with inflammation; however, whether TRPV4 inhibition might alleviate SAE-related brain damage is still unknown. Therefore, we aimed to investigate the role and mechanism of HC067047, a potent inhibitor of TRPV4, in hyperneuroinflammation and blood-brain barrier (BBB) dysfunction in a lipopolysaccharide (LPS)-induced SAE mouse model. We found that HC067047 administration significantly inhibited the expression of TRPV4 and p-CamkIIα in the hippocampi of SAE mice. Furthermore, HC067047 treatment attenuated LPS-induced endoplasmic reticulum (ER) stress and oxidative stress (OS), thus remarkably preventing NLRP3 inflammasome-mediated pyroptosis, as well as the expression of proinflammatory factors (IL-1ß and IL-18). Additionally, we found that HC067047 selectively prevented pyroptosis in hippocampal cells, mainly the neurons, oligodendrocytes and the resident microglia. The disruption of BBB integrity in SAE mice was also rescued by HC067047 intervention. Thus, we can conclude that the TRPV4 inhibitor HC067047 could protect against hippocampal cell pyroptosis, which might be due to the attenuation of the NLRP3 inflammasome-mediated pyroptosis pathway caused by ER stress and OS. Our findings suggest a potential preventive role for HC067047 in SAE.


Assuntos
Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Piroptose/fisiologia , Canais de Cátion TRPV/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Hipocampo/metabolismo , Estresse Oxidativo , Estresse do Retículo Endoplasmático
20.
Int Immunopharmacol ; 116: 109648, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706595

RESUMO

Colonic injury causes severe inflammation during systemic infections in patients with endotoxemia. The prevention of colonic injury could effectively reduce the progression of endotoxemia. We investigated the protective effects and detailed mechanisms of the TRPV4 inhibitor HC067047 in the treatment of colonic injury caused by endotoxemia. An LPS-induced endotoxemia colonic injury model was used to assess the in vivo effects of HC067047. Colon slices were detected by hematoxylin and eosin (HE) staining and immunofluorescence assays. Spectrophotometry was used to determine the levels of MDA, calcium, GSH, and GSSG. Alterations in oxidative stress/mitophagy/inflammatory pyroptosis-related markers were evaluated by Q-PCR and western blot assays. HC067047 reduced the body weight loss and spleen weight index of endotoxemic mice and partly recovered the normal morphology of the colonic mucous layer. As an inhibitor of the calcium permeant cation channel, HC067047 suppressed the phosphorylation of the CAMKIIɑ protein and levels of MDA and calcium, upregulated the ratio of GSH/GSSG, shortened the expression of oxidative stress-related proteins, and enhanced the expression of the anti-oxidative protein CAT in damaged colon tissues. Additionally, HC067047 maintained normal mitochondrial functions in endotoxemia colons by promoting mitochondrial fusion and biosynthesis and suppressing mitochondrial fission and the PINK/Parkin/mitophagy pathway. HC067047 potently blocked inflammatory pyroptosis and protected the colonic tight junction barrier. HC067047 restores endotoxemia colons against oxidative stress, mitophagy, inflammatory pyroptosis, and colonic barrier dysfunction. Hence, HC067047 therapy may be potentially useful in the treatment of colonic injury in endotoxemia.


Assuntos
Endotoxemia , Camundongos , Animais , Endotoxemia/tratamento farmacológico , Cálcio/metabolismo , Canais de Cátion TRPV/metabolismo , Dissulfeto de Glutationa/metabolismo , Colo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA