Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Am Chem Soc ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916547

RESUMO

Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.

2.
ACS Appl Mater Interfaces ; 16(19): 24691-24702, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693896

RESUMO

Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.

3.
Adv Sci (Weinh) ; 10(26): e2302143, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37401146

RESUMO

Rationally constructing atom-precise active sites is highly important to promote their catalytic performance but still challenging. Herein, this work designs and constructs ZSM-5 supported Cu and Ag dual single atoms as a proof-of-concept catalyst (Ag1 -Cu1 /ZSM-5 hetero-SAC (single-atom catalyst)) to boost direct oxidation of methane (DOM) by H2 O2 . The Ag1 -Cu1 /ZSM-5 hetero-SAC synthesized via a modified co-adsorption strategy yields a methanol productivity of 20,115 µmol gcat -1 with 81% selectivity at 70 °C within 30 min, which surpasses most of the state-of-the-art noble metal catalysts. The characterization results prove that the synergistic interaction between silver and copper facilitates the formation of highly reactive surface hydroxyl species to activate the C-H bond as well as the activity, selectivity, and stability of DOM compared with SACs, which is the key to the enhanced catalytic performance. This work believes the atomic-level design strategy on dual-single-atom active sites should pave the way to designing advanced catalysts for methane conversion.

4.
Natl Sci Rev ; 10(5): nwad057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274941

RESUMO

The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.

5.
Adv Mater ; 35(25): e2208504, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014632

RESUMO

Precise determination of the structure-property relationship of zeolite-based metal catalysts is critical for the development toward practical applications. However, the scarcity of real-space imaging of zeolite-based low-atomic-number (LAN) metal materials due to the electron-beam sensitivity of zeolites has led to continuous debates regarding the exact LAN metal configurations. Here, a low-damage high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging technique is employed for direct visualization and determination of LAN metal (Cu) species in ZSM-5 zeolite frameworks. The structures of the Cu species are revealed based on the microscopy evidence and also proved by the complementary spectroscopy results. The correlation between the characteristic Cu size in Cu/ZSM-5 catalysts and their direct oxidation of methane to methanol reaction properties is unveiled. As a result, the mono-Cu species stably anchored by Al pairs inside the zeolite channels are identified as the key structure for higher C1 oxygenates yield and methanol selectivity for direct oxidation of methane. Meanwhile, the local topological flexibility of the rigid zeolite frameworks induced by the Cu agglomeration in the channels is also revealed. This work exemplifies the combination of microscopy imaging and spectroscopy characterization serves as a complete arsenal for revealing structure-property relationships of the supported metal-zeolite catalysts.

6.
Dis Markers ; 2021: 7190301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868396

RESUMO

BACKGROUND: The SOX gene family has been proven to display regulatory effects on numerous diseases, particularly in the malignant progression of neoplasms. However, the molecular functions and action mechanisms of SOX genes have not been clearly elucidated in clear cell renal cell carcinoma (ccRCC). We aimed to explore the expression status, prognostic values, clinical significances, and regulatory actions of SOX genes in ccRCC. METHODS: RNA-sequence data and clinical information derived from The Cancer Genome Atlas (TCGA) database was used for this study. Dysregulated SOX genes between the normal group and ccRCC group were screened using the Wilcoxon signed-rank test. The Kaplan-Meier analysis and univariate Cox analysis methods were used to estimate the overall survival (OS) and disease-specific survival (DSS) differences between different groups. The independent prognostic factors were identified by the use of uni- and multivariate assays. Subsequently, the Wilcoxon signed-rank test or Kruskal-Wallis test and the chi-square test or Fisher exact probability methods were employed to explore the association between clinicopathological variables and SOX genes. Finally, CIBERSORT was applied to study the samples and examine the infiltration of immune cells between different groups. RESULTS: Herein, 12 dysregulated SOX genes in ccRCC were screened. Among them, two independent prognostic SOX genes (SOX6 and SOX12) were identified. Further investigation results showed that SOX6 and SOX12 were distinctly associated with clinicopathological features. Furthermore, functional enrichment analysis revealed that SOX6 and SOX12 were enriched in essential biological processes and signaling pathways. Finally, we found that the SOX6 and SOX12 expression levels were correlated with tumor-infiltrating immune cells (TIICs). CONCLUSION: The pooled analyses showed that SOX6 and SOX12 could serve as promising biomarkers and therapeutic targets of patients with ccRCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Bases de Dados Genéticas , Neoplasias Renais/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXD/metabolismo , Carcinoma de Células Renais/metabolismo , Feminino , Humanos , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
7.
J Chem Theory Comput ; 17(7): 4465-4476, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34100605

RESUMO

There is an increasing demand for free-energy calculations using ab initio molecular dynamics these days. Metadynamics (MetaD) is frequently utilized to reconstruct the free-energy surface, but it is often computationally intractable for the first-principles calculations. Machine learning potentials (MLPs) have become popular alternatives. However, the training could be a long and arduous process before using them in practical applications. To accelerate MetaD use with MLPs for the free-energy calculation in an easy manner, we propose the adaptive machine learning potential-accelerated metadynamics (AMLP-MetaD). In this method, the MLP in the form of a Gaussian approximation potential (GAP) can adapt itself based on its uncertainty estimation, which decides whether to accept the model prediction or recalculate it with a reference method (usually density functional theory) for further training during the MetaD simulation. We demonstrate that the free-energy landscape similar to the ab initio one can be obtained using AMLP-MetaD with a 10-time speedup. Moreover, the quality of the free-energy results can be deeply improved using Δ-MLP, which is the GAP-corrected density functional tight binding in our case. We exemplify this novel method with two model systems, CO adsorption on the Pt13 cluster and the Pt(111) surface, which are of vital importance in heterogeneous catalysis. The successful application in these two tests highlights that our proposed method can be used in both cluster and periodic systems and for up to two collective variables.

8.
Phys Chem Chem Phys ; 23(19): 11155-11179, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33972971

RESUMO

Heterogeneous catalysis plays a significant role in the modern chemical industry. Towards the rational design of novel catalysts, understanding reactions over surfaces is the most essential aspect. Typical industrial catalytic processes such as syngas conversion and methane utilisation can generate a large reaction network comprising thousands of intermediates and reaction pairs. This complexity not only arises from the permutation of transformations between species but also from the extra reaction channels offered by distinct surface sites. Despite the success in investigating surface reactions at the atomic scale, the huge computational expense of ab initio methods hinders the exploration of such complicated reaction networks. With the proliferation of catalysis studies, machine learning as an emerging tool can take advantage of the accumulated reaction data to emulate the output of ab initio methods towards swift reaction prediction. Here, we briefly summarise the conventional workflow of reaction prediction, including reaction network generation, ab initio thermodynamics and microkinetic modelling. An overview of the frequently used regression models in machine learning is presented. As a promising alternative to full ab initio calculations, machine learning interatomic potentials are highlighted. Furthermore, we survey applications assisted by these methods for accelerating reaction prediction, exploring reaction networks, and computational catalyst design. Finally, we envisage future directions in computationally investigating reactions and implementing machine learning algorithms in heterogeneous catalysis.

9.
Orthop Surg ; 12(2): 378-387, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180364

RESUMO

To describe the outcomes of autografts and synthetics in anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) reconstruction with respect to instrumented laxity measurements, patient-reported outcome scores, complications, and graft failure risk. We searched PubMed, Cochrane Library, and EMBASE for published randomized controlled trials (RCT) and case controlled trials (CCTs) to compare the outcomes of the autografts versus synthetics after cruciate ligament reconstruction. Data analyses were performed using Cochrane Collaboration RevMan 5.0. Nine studies were identified from the literature review. Of these studies, three studies compared the results of bone-patellar tendon-bone (BPTB) and ligament augmentation and reconstruction system (LARS), while six studies compared the results of four-strand hamstring tendon graft (4SHG) and LARS. The comparative study showed no difference in Lysholm score and failure risk between autografts and synthetics. The combined results of the meta-analysis indicated that there was a significantly lower rate of side-to-side difference > 3 mm (Odds Ratio [OR] 2.46, 95% confidence intervals [CI] 1.44-4.22, P = 0.001), overall IKDC (OR 0.40, 95% CI 0.19-0.83, P = 0.01), complications (OR 2.54, 95% CI 1.26-5.14, P = 0.009), and Tegner score (OR -0.31, 95% CI -0.52-0.10, P = 0.004) in the synthetics group than in the autografts group. This systematic review comparing long-term outcomes after cruciate ligament reconstruction with either autograft or synthetics suggests no significant differences in failure risk. Autografts were inferior to synthetics with respect to restoring knee joint stability and patient-reported outcome scores, and were also associated with more postoperative complications.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Autoenxertos , Materiais Biocompatíveis , Reconstrução do Ligamento Cruzado Posterior , Humanos , Medidas de Resultados Relatados pelo Paciente
10.
Phys Chem Chem Phys ; 22(14): 7348-7364, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32211648

RESUMO

The first-principles kinetic Monte Carlo (kMC) simulation has been demonstrated as a reliable multiscale modeling approach in silico to disclose the interplay among all the elementary steps in a complex reaction network for heterogeneous catalysis. Heterogeneous catalytic systems frequently contain fast surface diffusion processes of some adsorbates while the elementary steps in it would be much slower than those in fast diffusion. Consequently, the kMC simulation for these systems is easily trapped in the sub-basins of a super basin on a potential energy surface due to the continuous and repeated sampling of these fast processes, which would significantly increase the total accessible simulation time and even make it impossible to get the reasonable simulation results using the kMC simulation. In this work, we present an improved fast species redistribution (FSR) method for the kMC simulation to overcome the stiffness problem resulting from the low-barrier surface diffusion to accelerate the heterogeneous catalytic kMC simulation. Taking CO oxidations on Pt(111) and Pt(100) as examples, we demonstrate that the FSR approach can properly reproduce the results of an equivalent first-principles microkinetic model simulation with more reasonable reaction rates. The improved kMC simulation based on the FSR method can accurately incorporate the effect of the fast diffusion of species on the surface and provide several orders of magnitude of acceleration compared to the standard kMC simulation.

11.
Nanoscale Res Lett ; 14(1): 308, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502100

RESUMO

One of the big challenge of studying the core-shell iron nanostructures is to know the nature of oxide shell, i.e., whether it is γ-Fe2O3 (Maghemite), Fe3O4 (Magnetite), α-Fe2O3 (Hematite), or FeO (Wustite). By knowing the nature of iron oxide shell with zero valent iron core, one can determine the chemical or physical behavior of core-shell nanostructures. Fe core-shell nanochains (NCs) were prepared through the reduction of Fe3+ ions by sodium boro-hydride in aqueous solution at room atmosphere, and Fe NCs were further aged in water up to 240 min. XRD was used to study the structure of Fe NCs. Further analysis of core-shell nature of Fe NCs was done by TEM, results showed increase in thickness of oxide shell (from 2.5, 4, 6 to 10 nm) as water aging time increases (from 0 min, 120 min, 240 min to 360 min). The Raman spectroscopy was employed to study the oxide nature of Fe NCs. To further confirm the magnetite phase in Fe NCs, the Mössbauer spectroscopy was done on Fe NCs-0 and Fe NCs-6. Result shows the presence of magnetite in the sample before aging in water, and the sample after prolonged aging contains pure Hematite phase. It shows that prolonged water oxidation transforms the structure of shell of Fe NCs from mixture of Hematite and Magnetite in to pure hematite shell. The Magnetic properties of the Fe NCs were measured by VSM at 320 K. Because of high saturation magnetization (Ms) values, Fe NCs could be used as r2 contrasts agents for magnetic resonance imaging (MRI) in near future.

12.
Phys Chem Chem Phys ; 21(23): 12555-12565, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31149681

RESUMO

It is of great importance to regulate a catalyst to control its selectivity. In general, the Pt catalyzed hydrogenation of nitrobenzene (PhNO2) would produce aniline. Yet, when KOH is added, the more value-added N-N coupling products such as aromatic azoxy and azo exhibit better selectivity. To identify the key factors governing the selectivity towards aromatic azoxy and azo in a complex reaction network, the reaction mechanisms of PhNO2 hydrogenation over Pt(111) are systematically investigated on the Pt(111) surface and at the KOH/Pt(111) interface utilizing microkinetic simulations based on the PBE-D3 calculated results. It is found that the selectivity strongly depends on the adsorption configuration of PhNO2 rather than on the coverage of the surface H*. In neutral environments, PhNO2 tends to lie flat on the Pt(111) with chemisorption of the phenyl group, which is in favor of the production of aniline. The addition of KOH makes PhNO2 preferentially chemisorb at the KOH/Pt(111) interface via the nitro group without the chemisorption of the phenyl group, which is in favor of the N-N coupling products. The KOH-induced tilted adsorption configuration and extra stabilization could promote the dehydroxylation of PhNOH* to form PhN*, which is the key intermediate for the production of azoxy and azo.

13.
J Org Chem ; 84(9): 5790-5802, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30971085

RESUMO

Designing artificial molecular machines to execute complex mechanical tasks, like coupling rotation and translation to accomplish transmission of motion, continues to provide important challenges. Herein, we demonstrated a novel molecular machine comprising a second-generation light-driven molecular motor and a bistable [1]rotaxane unit. The molecular motor can rotate successfully even in an interlocked [1]rotaxane system through a photoinduced cis-to -trans isomerization and a thermal helix inversion, resulting in concomitant transitional motion of the [1]rotaxane. The transmission process was elucidated via 1H NMR, 1H-1H COSY, HMQC, HMBC, and 2D ROESY NMR spectroscopies, UV-visible absorption spectrum, and density functional theory calculations. This is the first demonstration of a molecular motor to rotate against the appreciably noncovalent interactions between dibenzo-24-crown-8 and N-methyltriazolium moieties comprising the rotaxane unit, showing operational capabilities of molecular motors to perform more complex tasks.

14.
Cancer Biomark ; 24(3): 257-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883336

RESUMO

OBJECTIVE: To investigate the role of miR-337-3p targeting Rap1A in modulating proliferation, invasion, migration and apoptosis of cervical cancer cells. METHODS: The expression levels of miR-337-3p and Rap1A in cervical cancer tissues and normal tissues were evaluated through quantitative Real-time PCR (qRT-PCR) and Western blotting; and correlations of miR-337-3p with clinicopathological characteristics and prognosis of patients were also analyzed. Besides, human cervical cancer cell line HeLa cells were randomly divided into five groups (Mock, NC, miR-337-3p mimic, Rap1A, and miR-337-3p mimic + Rap1A groups). CCK-8 assay was utilized to measure cell proliferation, flow cytometry to evaluate cell apoptosis, and wound-healing and Transwell assays to detect cell migration and invasion. RESULTS: Cervical cancer tissues presented a significant decrease in miR-337-3p and a remarkable increase in Rap1A protein. Besides, the expression levels of miR-337-3p and Rap1A were closely related to the major clinicopathological characteristics of cervical cancer; and patients with high-miR-337-3p-expression had the higher 5-year survival rate (all p< 0.05). When compared to Mock group, cells in miR-337-3p mimic group were suppressed in proliferation, migration, and invasion, but significantly promoted in apoptosis; meanwhile, cells in the Rap1A group showed changes in a completely opposite trend (all p< 0.05). Moreover, Rap1A can reverse the effect of miR-337-3p mimic on cell proliferation, invasion, migration and apoptosis (all p< 0.05). CONCLUSION: MiR-337-3p was discovered to be decreased in cervical cancer, and miR-337-3p up-regulation may inhibit the proliferation, migration and invasion and promote the apoptosis of cervical cancer cells via down-regulating Rap1A.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Interferência de RNA , Neoplasias do Colo do Útero/genética , Proteínas rap1 de Ligação ao GTP/genética , Adulto , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Genes Reporter , Células HeLa , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/mortalidade
15.
Int Immunopharmacol ; 65: 212-220, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30317108

RESUMO

BACKGROUND: It has been noted that anterior cruciate ligament (ACL) injury-induced cartilage degeneration is the key risk factor for post-traumatic osteoarthritis (PTOA). However, whether the cartilage degeneration after ACL injury is caused by inflammation, abnormal biomechanics or both remains largely unknown, as there has been no animal model for separating the two factors so far. METHODS: Eighteen-month-old female mini-pigs were divided into an "idealized" anterior cruciate ligament reconstruction (IACLR) group and a control group (n = 16 limbs per group). Real-time PCR, safranine O staining and indian ink staining were performed to verify whether animal models were successfully established or not. Multiple linear regression analysis was used to evaluate the correlation between levels of the inflammatory factors (including interferon [IFN]-γ, interleukin [IL]-1ß, IL-4, IL-6, IL-8, IL-10, IL-12 and tumor necrosis factor [TNF]-α measured by the Luminex method) and changes in cartilage histology (quantified by morphological scoring) after surgery. RESULTS: A significant OA cartilage damage with increased MMP-1, MMP-13 mRNA levels and reduced aggrecan mRNA/protein levels was observed in IACLR groups. As a result, the IACLR gross morphology score was dramatically increased than control. Moreover, IACLR significantly increased the levels of IL-1ß, IL-4, IL-6 and TNF-α in the synovial fluid of the knee. Most importantly, a close relationship was found between IL-1ß, IL-6 and TNF-α concentrations and morphological score of PTOA, respectively. CONCLUSION: These results demonstrated that inflammatory factors are independently responsible for the onset of PTOA.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirurgia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Osteoartrite do Joelho/imunologia , Complicações Pós-Operatórias/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Lesões do Ligamento Cruzado Anterior/complicações , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-1beta/genética , Interleucina-6/genética , Osteoartrite do Joelho/etiologia , Suínos , Porco Miniatura , Fator de Necrose Tumoral alfa/genética
16.
Chem Sci ; 9(26): 5709-5715, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30079179

RESUMO

White-light emitting organic materials attract broad attention which are ascribed to their potential for applications in lighting devices and display media. Most reported organic white-light emitters rely on the combination of several components that emit different colors of light (red/green/blue or orange/blue), which may cause problems to stability, reproducibility and device fabrication. By contrast, white-light emission from single-molecule systems offers opportunities to overcome these disadvantages, meanwhile engendering white-light with high quality. Nevertheless, limited cases of white-light emission at the molecular scale reported principally concentrate on organic solvents. Herein, we designed and synthesized new bi-functional organic molecules with a symmetric donor-acceptor-donor (D-A-D) type structure with the aim to construct a single-molecule white-light emitting system in aqueous solution. Further experiments and calculations demonstrate the possibility of stacking between the pyridinium-naphthalene (PN) core and coumarin groups in the designed molecules, ascribed to hydrophobic effects, π-π stacking and donor-acceptor interactions, which could dramatically enhance the intramolecular charge transfer (ICT) efficiency along with remarkable charge transfer (CT) emission. Based on this, multicolor photoluminescence including white-light can be finely tuned in various modes including excitation wavelength, solvent polarity, temperature, and host-guest interactions. A white-light emitting (WLE) hydrogel was also facilely prepared through the dispersion of one of the compounds in a commercial agarose gelator. This innovative study helps enrich the strategies to construct single-molecule organic white-light emitting materials in aqueous medium using the self-folding behavior.

17.
Chem Commun (Camb) ; 54(45): 5736-5739, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29781003

RESUMO

Homo (Au3)- and heterotrinuclear coinage metal complexes (Au2Ag and Au2Cu) ligated by the first tritopic carbanionic N-heterocyclic carbene (NHC) have been prepared by deprotonation of ditopic NHC digold complexes and structurally characterized by single-crystal X-ray diffraction.

18.
ChemSusChem ; 11(9): 1421-1425, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29542286

RESUMO

A simple cadmium sulfide nanomaterial is found to be an efficient and stable electrocatalyst for CO2 reduction in aqueous medium for more than 40 h with a steady CO faradaic efficiency of approximately 95 %. Moreover, it can realize a current density of -10 mA cm-2 at an overpotential of -0.55 V on a porous substrate with similar selectivity. Theoretical and experimental results confirm that the high selectivity for CO2 reduction is due to its (0 0 0 2) face with sulfur vacancies that prefers CO2 molecule reduction in aqueous medium.

19.
J Am Chem Soc ; 140(5): 1916-1923, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29300466

RESUMO

Metal-free room-temperature phosphorescence (RTP) materials offer unprecedented potentials for photoelectric and biochemical materials due to their unique advantages of long lifetime and low toxicity. However, the achievements of phosphorescence at ambient condition so far have been mainly focused on ordered crystal lattice or on embedding into rigid matrices, where the preparation process might bring out poor repeatability and limited application. In this research, a series of amorphous organic small molecular compounds were developed with efficient RTP emission through conveniently modifying phosphor moieties to ß-cyclodextrin (ß-CD). The hydrogen bonding between the cyclodextrin derivatives immobilizes the phosphors to suppress the nonradiative relaxation and shields phosphors from quenchers, which enables such molecules to emit efficient RTP emission with decent quantum yields. Furthermore, one such cyclodextrin derivative was utilized to construct a host-guest system incorporating a fluorescent guest molecule, exhibiting excellent RTP-fluorescence dual-emission properties and multicolor emission with a wide range from yellow to purple including white-light emission. This innovative and universal strategy opens up new research paths to construct amorphous metal-free small molecular RTP materials and to design organic white-light-emitting materials using a single supramolecular platform.

20.
J Am Chem Soc ; 139(44): 15584-15587, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29020768

RESUMO

Photocatalytic upgrading of crucial biomass-derived intermediate chemicals (i.e., furfural alcohol, 5-hydroxymethylfurfural (HMF)) to value-added products (aldehydes and acids) was carried out on ultrathin CdS nanosheets (thickness ∼1 nm) decorated with nickel (Ni/CdS). More importantly, simultaneous H2 production was realized upon visible light irradiation under ambient conditions utilizing these biomass intermediates as proton sources. The remarkable difference in the rates of transformation of furfural alcohol and HMF to their corresponding aldehydes in neutral water was observed and investigated. Aided by theoretical computation, it was rationalized that the slightly stronger binding affinity of the aldehyde group in HMF to Ni/CdS resulted in the lower transformation of HMF to 2,5-diformylfuran compared to that of furfural alcohol to furfural. Nevertheless, photocatalytic oxidation of furfural alcohol and HMF under alkaline conditions led to complete transformation to the respective carboxylates with concomitant production of H2.


Assuntos
Compostos de Cádmio/química , Hidrogênio/química , Luz , Nanoestruturas/química , Níquel/química , Sulfetos/química , Aldeídos/química , Biomassa , Catálise/efeitos da radiação , Furaldeído/análogos & derivados , Furaldeído/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA