RESUMO
RNA modifications play a crucial regulatory role in a variety of biological processes and are closely related to numerous diseases, including cancer. The diversity of metabolites in serum makes it a favored biofluid for biomarkers discovery. In this work, a robust and accurate hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) approach was established for simultaneous determination of dimethylated nucleosides in human serum. Using the established method, we were able to accurately quantify the concentrations of N6-2'-O-dimethyladenosine (m6Am), N2,N2-dimethylguanosine (m2,2G), and 5,2'-O-dimethyluridine (m5Um) in serum samples from 53 healthy controls, 57 advanced colorectal adenoma patients, and 39 colorectal cancer (CRC) patients. The results showed that, compared with healthy controls and advanced colorectal adenoma patients, the concentrations of m6Am and m2,2G were increased in CRC patients, while the concentration of m5Um was decreased in CRC patients. These results indicate that these three dimethylated nucleosides could be potential biomarkers for early detection of colorectal cancer. Interestingly, the level of m5Um was gradually decreased from healthy controls to advanced colorectal adenoma patients to CRC patients, indicating m5Um could also be used to evaluate the level of malignancy of colorectal tumor. In addition, this study will contribute to the investigation on the regulatory mechanisms of RNA dimethylation in the onset and development of colorectal cancer.
Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Nucleosídeos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Biomarcadores , Neoplasias Colorretais/diagnóstico , Interações Hidrofóbicas e Hidrofílicas , Adenoma/metabolismo , RNA/química , Biomarcadores TumoraisRESUMO
Adulteration of meat and meat products causes a concerning threat for consumers. It is necessary to develop novel robust and sensitive methods which can authenticate the origin of meat species to compensate for the drawbacks of existing methods. In the present study, the sarcoplasmic proteins of six meat species, namely, pork, beef, mutton, chicken, duck and turkey, were analyzed by one-dimensional gel electrophoresis. It was found that enolase could be used as a potential biomarker protein to distinguish between livestock and poultry meats. The glycosylation sites and glycans of enolase were analyzed by UPLC-QTOF-MS and a total of 41 glycopeptides were identified, indicating that the enolase N-glycopeptide profiles of different meats were species-specific. The identification models of livestock meat, poultry and mixed animal were established based on the glycopeptide contents, and the explanation degree of the three models was higher than 90%. The model prediction performance and feasibility results showed that the average prediction accuracy of the three models was 75.43%, with the animal-derived meat identification model showing superiority in identifying more closely related species. The obtained results indicated that the developed strategy was promising for application in animal-derived meat species monitoring and the quality supervision of animal-derived food.
Assuntos
Glicopeptídeos , Carne Vermelha , Bovinos , Animais , Carne/análise , Aves Domésticas , Carne Vermelha/análise , Galinhas , Fosfopiruvato HidrataseRESUMO
P-glycoprotein (P-gp) is one of the drug efflux transporters that triggers multidrug resistance (MDR) in cells. Herein, by utilizing the strategies of active skeleton splicing and structural optimization on the lead compound 5 m, a total of 50 novel 2,5-disubstituted furan derivatives were designed, synthesized, and screened for P-gp inhibitory activity. The structure-activity relationship analysis enabled the identification of an important pharmacophore N-phenylbenzamide, which resulted in the discovery of a promising drug lead compound â ¢-8. â ¢-8 possesses broad-spectrum reversal activity and low toxicity in MCF-7/ADR cells. Western blot and Rh123 accumulation assay demonstrated that â ¢-8 displayed the reversal activity by inhibiting P-gp efflux. Molecular docking analysis indicated a potent affinity of â ¢-8 to P-gp by forming H-bond interactions with residues Asn 721 and Met 986. â ¢-8 was determined to be a highly effective and safe P-gp inhibitor in an MCF-7/ADR xenograft mouse model.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Resistência a Múltiplos Medicamentos , Animais , Humanos , Camundongos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Furanos/farmacologia , Células MCF-7 , Simulação de Acoplamento Molecular , Glicoproteínas/química , Glicoproteínas/metabolismoRESUMO
The lotus seed pod is one of the main organs of the lotus plant and is commonly used in traditional medicine. It is believed to have dehumidifying and anti-rheumatic effects. This study, utilized the non-targeted approach of identification via UPLC-QTOF-MS/MS to identify the main chemical components in the lotus seed pod extracts and found a total of 118 compounds. Among them, 25 components were identified for the first time in the lotus seed pod. Next, using the molecular docking technique, common gout receptors (PDB ID: 1N5X, 1FIQ, 2EIQ) were docked to the compounds in the extracts, and their activities were screened using the LibDock and CDOCKER modules. In order to screen compounds with anti-gout activity in the lotus seed pod, acid precipitation (AP) fractions were prepared by an established extraction method of flavonoids, which were then analyzed qualitatively and quantitatively. Finally, a rodent model bearing acute gout and hyperuricemia was established by ankle injection of sodium urate and intraperitoneal injection of xanthine and potassium oxonate. The results of this study showed that AP could not only significantly alleviate joint swelling and pro-inflammatory cytokine levels, but also reduce synovial and renal pathological damage. This indicated the efficacy of AP in the treatment of gouty arthritis.
Assuntos
Artrite Gotosa , Gota , Hiperuricemia , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Extratos Vegetais/química , Estrutura Molecular , Hiperuricemia/tratamento farmacológico , Hiperuricemia/patologia , Sementes/químicaRESUMO
RNA modifications have been revealed to be essential in many biological activities, and their disorders are associated with various human diseases, including cancers. 2'-O-methyladenosine (Am), N1-methyladenosine (m1A), N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am) and N6,N6-dimethyladenosine (m62A) are important adenosine (A) modifications. The noninvasive collection of urine samples and the diverse contents of metabolites in plasma make them favored biofluids for biomarkers discovery. In this work, we established a hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method to quantify these six nucleosides in urine and plasma of healthy controls and breast cancer (BC) patients. The limit of detection (LOD) for A, Am, m1A, m6A, m6Am, and m62A were 0.0025, 0.01, 0.05, 0.005, 0.005, and 0.005 nM. The results showed that the concentrations of Am, m6A, and m6Am were increased, whereas m1A was decreased in the urine of BC patients compared with the healthy controls. We also found that the level ratios of m1A/A, m6A/A, and m6Am/A were all reduced in plasma from BC patients, compared with healthy controls. Interestingly, these ratios of methylated adenosine nucleosides to adenosine in plasma could better discriminate BC patients from healthy controls, compared to the levels of these nucleosides. The present study not only suggests these modified adenosines can act as noninvasive biomarkers of BC but also will contribute to investigating the impacts of RNA methylation on the occurrence and development of BC.
Assuntos
Neoplasias da Mama , Espectrometria de Massas em Tandem , Adenosina/química , Cromatografia Líquida/métodos , Feminino , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nucleosídeos/urina , RNA/química , Espectrometria de Massas em Tandem/métodosRESUMO
Malondialdehyde (MDA) is one of the representative end products under lipid peroxidation, indicating the degree of lipid oxidation in foods. However, compounds in pickled products, especially the nitrite in salted lean pork can react with MDA under the acidic condition, leads to the loss of MDA and an underestimation on lipid oxidation through the conventional assay. In this study, the quantification for MDA in the sample containing sodium nitrite were found lacking accuracy by the thiobarbituric acid (TBA) assay and chromatography assay based on alkaline hydrolysis as the reaction between them were difficult to be completely inhibited. Among other trials, the improvement GC-MS analysis utilizing deuterium substituted MDA (MDA-d2) as an internal standard and applying perfluorophenylhydrazine (PFPH) as a derivative reagent can reduce the deviations from the presence of nitrite in the salted lean pork meat and the recovery is between 93.9% and 98.4% and coefficient of variation for the intermediate precision is between 1.1 and 3.5% using the method. The advanced gas chromatograph mass spectrometer (GC-MS) assay also has a very low detection limit (0.25 ng/mL) with both hydrolysis types.
RESUMO
Lotus seed epicarp, a byproduct of lotus, is commonly discarded directly or burned in the cropland, resulting in waste of resources and environmental pollution. In this work, a green ultrasonic-assisted extraction method with ethyl lactate as the extraction solvent was established to extract alkaloids from lotus seed epicarp. The extraction conditions were optimized by response surface methodology. Under the optimal extraction conditions, the extraction of alkaloids from 1 g lotus seed epicarp was accomplished with only 10 mL of extraction solvent within 15 min. Combined with ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry with information-dependent acquisition mode, a total of 42 alkaloids were annotated in the lotus seed epicarp extracts. Among them, 39 alkaloids were reported in lotus seed epicarp for the first time. According to quantitative analysis, the distributions and trends of alkaloids in the lotus seed epicarp were found to be similar to those of lotus leaves. The five growth stages of lotus seed epicarp could be successfully distinguished based on the ten representative alkaloids. This study demonstrates that ultrasonic-assisted extraction with ethyl lactate as extractant solvent was efficient in the extraction of alkaloids from lotus seed epicarp, which is a potential renewable resource of bioactive ingredients.
RESUMO
N6-methyl-2'-deoxyadenosine (m6dA) is a newly discovered DNA epigenetic mark in mammals. N6-methyladenosine (m6A), 2'-O-methyladenosine (Am), N6,2'-O-dimethyladenosine (m6Am), and N6,N6-dimethyladenosine (m62A) are common RNA modifications. Previous studies illustrated the associations between the aberrations of these methylated adenosines in nucleic acids and cancer. Herein, we developed Fe3O4/graphene-based magnetic dispersive solid-phase extraction for the enrichment and hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS/MS) for the measurements of m6dA, m6A, Am, m6Am, and m62A in human urine samples. We found that malic acid could improve the HILIC-based separation of these modified nucleosides and markedly enhance the sensitivity of their MS detection. With this method, we accurately quantified the contents of these modified adenine nucleosides in urine samples collected from gastric and colorectal cancer patients as well as healthy controls. We found that, relative to healthy controls, urinary m6dA and Am levels are significantly lower for gastric and colorectal cancer patients; while gastric cancer patients also exhibited lower levels of urinary m6A, the trend was opposite for colorectal cancer patients. Together, we developed a robust analytical method for simultaneous measurements of five methylated adenine nucleosides in human urine, and our results revealed an association between the levels of urinary methylated adenine nucleosides and the occurrence of gastric as well as colorectal cancers, suggesting the potential applications of these modified nucleosides as biomarkers for the early detection of these cancers.
Assuntos
Nucleosídeos , Espectrometria de Massas em Tandem , Adenina , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Interações Hidrofóbicas e HidrofílicasRESUMO
RATIONALE: Exploring the formation mechanism of the exceptional adducts of alkoxides with Ru(II)-arene cations in alkyl alcohol solution using electrospray ionization mass spectrometry (ESI-MS) is crucial for further understanding the physicochemical properties of Ru(II)-arene complexes in solution. METHODS: All mass spectra were collected with an AB SCIEX TripleTOF 5600+ mass spectrometer in positive mode. Theoretical calculations were carried out using the density functional theory method at the B3LYP level with a hybrid basis set consisting of 6-31G(d,p) and LanL2DZ in the Gaussian 03 program. RESULTS: When ruthenated [15 ]paracyclophanes (Ru-[15 ]PCPs) and Ru(II)-arene dimers were dissolved in alkyl alcohol solvents, the adducts of alkoxides with Ru(II)-arene cations were observed under positive ion mode ESI-MS, which resulted from the coordination of alkyl alcohol molecules with the Ru(II)-arene cations followed by the deprotonation of O-H bonds of the coordinated alcohols. Furthermore, the number of alkoxides binding to Ru-[15 ]PCPs was regulated by the number of ruthenium atoms. Attributed to good solubility and small steric hindrance, the signal intensity of the adducts of methoxides with Ru(II)-arene cations was the strongest among the three alkyl alcohols used in this study. CONCLUSIONS: The characteristic adducts of alkoxides with Ru(II)-arene cations were pervasively present in positive ion mode ESI-MS of nine Ru(II)-arene complexes dissolved in alkyl alcohol solvents. Taking into consideration the solubility and signal response, methanol is the most suitable solvent for the ESI-MS experiments with Ru(II)-arene complexes among the solvents studied, where almost only the diagnostic adducts of methoxides with Ru(II)-arene cations are present.
RESUMO
An electrochemical sulfonylation of alkynes with sodium sulfinates was achieved for the first time at room temperature. Employing this electrolysis strategy, the reaction occurs efficiently under transition-metal-free, external oxidant-free, and base-free conditions and furnishes diverse alkynyl sulfones in satisfactory yield with broad functional group tolerance.
RESUMO
A catalytic, aerobic oxidative dearomatization protocol has been developed for the preparation of spiroisoxazline scaffolds from oximes using TEMPO and NaNO2 as the catalyst and O2 as the sole oxidant. This dearomatization methodology features its mild reaction conditions, good functional group tolerance, and an unprecedented broad substrate scope, encompassing phenols, aryl ethers, thiophenols, aryl sulfides, etc.
RESUMO
In this work, a novel quick, easy, cheap, effective, rugged, and safe technique with hydrophobic natural deep eutectic solvent as both extractant and analyte protectant was developed and combined with gas chromatography-tandem mass spectrometry to analyze pyrethroid residues in tomatoes. Eight hydrophobic natural deep eutectic solvents were first evaluated as analyte protectants and those with decanoic acid or lactic acid as hydrogen bond donor were demonstrated to be effective in compensating for the matrix effects of pyrethroids in the gas chromatography system. Hence, they were added to solvent standards for correcting the quantitation errors instead of matrix-matched calibration standards. Then the abilities of these acid-based deep eutectic solvents to extract pyrethriods from tomatoes were evaluated. Results showed the recoveries of all pyrethroids reached to over 80% with only 5 mL menthol:decanoic acid (1:1) used, and good phase separation was easily achieved without the addition of inorganic salt in the extraction step, indicating hydrophobic natural deep eutectic solvent could be a green substitute for acetonitrile in the quick, easy, cheap, effective, rugged, and safe extraction. Compared with the conventional method, the proposed protocol improved the recoveries, reduced the matrix effects, and simplified the extraction step, demonstrating to be an effective, fast, and green method.
Assuntos
Produtos Biológicos/análise , Ácidos Decanoicos/química , Mentol/química , Resíduos de Praguicidas/análise , Piretrinas/análise , Solanum lycopersicum/química , Cromatografia Gasosa-Espectrometria de Massas , Interações Hidrofóbicas e Hidrofílicas , Solventes/químicaRESUMO
A dispersive liquid-liquid extraction based on Pickering emulsion stabilized with ferroferric oxide grafted nitrogen-doped graphitized carbon black has been developed to simultaneously determine seven aldehydes in environmental water samples, in combination with pentafluorobenzyl hydroxylamine precolumn derivatization gas chromatography-tandem mass spectrometry. The nitrogen-doped graphitized carbon was prepared from dicyandiamide waste residue with a simple acid wash process. The effects of magnetic emulsifier amount, extraction time, solution pH, and oil/water volume ratio on the formation of magnetically responsive Pickering emulsion and the extraction efficiency of the proposed dispersive liquid-liquid extraction were also investigated. Under the optimized conditions, satisfactory linearities were obtained for all aldehydes with correlation coefficients larger than 0.9984. The limits of detection and quantitation of seven aldehydes were in the range of 17.3-30.1 ng/L and 54.3-103.4 ng/L, respectively, with intra- and interday relative standard deviations less than 8.6%. The mean recoveries at three spiked levels ranged from 70.0 to 101.4%. With the Pickering emulsion as a "minimized extractor", the extraction was accomplished within 5 min. After extraction, the magnetic disperser could be recovered for reuse at least five times by an external magnetic field. The proposed method was demonstrated to be feasible, simple, and economic for the trace analysis of the aldehydes in environmental water samples.
RESUMO
An electrochemical oxydihalogenation of alkynes has been developed for the first time. Using this sustainable protocol, a variety of α,α-dihaloketones can be prepared with readily available CHCl3, CH2Cl2, ClCH2CH2Cl, and CH2Br2 as the halogen source under electrochemical conditions at room temperature.
RESUMO
A metal-free α-C-H functionalization of cyclic 1,2-diketones with aryl sulfoxides has been developed. This regioselective arylation involves nucleophilic substitution at the activated sulfoxide with a diosphenol, followed by [3,3]-sigmatropic rearrangement. This protocol can also be applied to the synthesis of polysubstituted cyclic 1,2-diketones with predictable structures by iterative arylations.
RESUMO
The synthesis of 1,2,3-triazoles with a sulfur-based side chain has been accessed with the metal-free annulation reactions of readily available ß-thiolated enaminones and tosyl hydrazine. By these reactions with water as the only medium, a broad array of 5-thiolated 1,2,3-triazoles have been synthesized with generally good to excellent yields. Except using TMEDA (N,N,N',N'-tetramethylethylenediamine) as the only base promoter, not any other catalyst or additive is required, thus providing an efficient and environmentally benign method for useful 1,2,3-triazole synthesis.
RESUMO
A metal-free method for formal ß-arylation/heteroarylation of ketones through efficient cyclopropanol ring-opening cross-couplings with aryl sulfoxides at room temperature has been developed. This protocol shows a broad substrate scope and promising scalability. In addition, the utility of the ß-arylated ketones is further demonstrated through a variety of postcoupling transformations and synthetic applications.
RESUMO
5-Methyl-2'-deoxycytidine (5-mdC), 5-hydroxymethyl-2'-deoxycytidine (5-hmdC), 5-methylcytidine (5-mrC) and 5-hydroxymethylcytidine (5-hmrC) are epigenetic marks of DNA and RNA, and aberrant levels of these modified nucleosides were found to be associated with various cancers. Urine is a preferred source of biological fluid for biomarker discovery because the sample collection process is not invasive to patients. Herein, we developed a novel malic acid-enhanced hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for sensitive and simultaneous quantification of the modified cytosine nucleosides in human urine. Malic acid markedly increased the detection sensitivities of all four cytosine nucleosides, with the limits of detection (LODs) for 5-mdC, 5-hmdC, 5-mrC and 5-hmrC being 0.025, 0.025, 0.025 and 0.050â¯fmol, respectively. By using this method, we demonstrated, for the first time, the presence of 5-hmrC in human urine, and we successfully quantified 5-mdC, 5-hmdC, 5-mrC and 5-hmrC in urine samples collected from 90 patients with colorectal cancer (CRC) and 90 healthy controls. We found that the levels of 5-mdC, 5-hmdC, 5-mrC and 5-hmrC in urine were all substantially decreased in CRC patients, suggesting that these modified nucleosides might have great potential to be noninvasive biomarkers for early detection and prognosis of CRC. Together, we established a novel and sensitive method for detecting 5-methylated and 5-hydroxymethylated cytosine nucleosides in human urine and the results from this study may stimulate future investigations about the regulatory roles of these cytosine derivatives in the initiation and development of CRC.
Assuntos
Citidina/análogos & derivados , Desoxicitidina/análogos & derivados , Malatos/química , Cromatografia Líquida , Citidina/química , Citidina/urina , Desoxicitidina/química , Desoxicitidina/urina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação de Ácido Nucleico , Espectrometria de Massas em TandemRESUMO
RATIONALE: The comparative study of higher-energy collisional dissociation (HCD) and collision-induced dissociation (CID) mechanisms for protonated cyclic indolyl α-amino esters in quadrupole/orbitrap (Q/Orbitrap) and quadrupole time-of-flight (QTOF) mass spectrometers, respectively, is helpful to study the structures and properties of biologically active indole derivatives using tandem mass spectrometry (MS/MS) technology. METHODS: HCD and CID experiments were carried out using electrospray ionization Q/Orbitrap MS and QTOFMS in positive ion mode, respectively. Only the labile hydrogens were exchanged with deuterium in hydrogen/deuterium exchange (HDX) experiments and only the aromatic indole C-H hydrogens were substituted with deuterium in regiospecific hydrogen-deuterium labeling experiments. Theoretical calculations were carried out using the density functional theory (DFT) method at the B3LYP level with the 6-311G(d,p) basis set in the Gaussian 03 package of programs. RESULTS: In Q/Orbitrap MS/MS, when the added proton on the N8 position of protonated cyclic indolyl α-amino esters migrated in a stepwise fashion to the C3 position via two sequential 1,4-H shifts, an ion-neutral complex INC1 of [protonated cyclic N-sulfonyl ketimino esters/indoles] was formed by a charge-directed heterolytic cleavage of the C3 -C10 bond, while an ion-neutral complex INC3 of [cyclic N-sulfonyl ketimino esters/protonated indoles] was formed when another labile hydrogen on the N8 position successively migrated to the C4 position. Direct decomposition of INC1 and INC3 resulted in protonated cyclic N-sulfonyl ketimino esters and protonated indoles, respectively, while proton transfer led to protonated indoles and protonated cyclic N-sulfonyl ketimino esters. The HDX reaction with residual water in the HCD cell was also observed. In QTOF-MS/MS, protonated cyclic N-sulfonyl ketimino esters and protonated indoles resulted from direct decomposition of INC1 and INC3 , respectively, rather than proton transfer. CONCLUSIONS: Due to the specific construction of the Q/Orbitrap and QTOF mass spectrometers, different fragmentation mechanisms medicated by ion-neutral complexes of protonated cyclic indolyl α-amino esters were proposed. This study is desirable for qualitative and quantitive investigation of indole derivatives using MS/MS technology.
RESUMO
A rapid, accurate and sensitive stable isotope dilution ultra performance liquidchromatography electrospray ionization tandem mass spectrometry (ID-UPLC-ESI-MS/MS) method for the determination of glycocholic acid (GCA) in human serum was developed and validated. Serum samples were spiked with D5-glycocholic acid and then pretreated with protein precipitation. The analysis was performed on a Waters BEH C18 column (100 mm×2.1mm, 1.7µm), followed by ESI-MS/MS detection in negative ion mode under multiple reaction monitoring mode. The calibration curves covered a concentration range from 0.2 to 400ng/mL. The limit of detection and limit of quantification was 0.01ng/mL and 0.05ng/mL, respectively. The method showed satisfactory precision on intra-day (2.3-6.1%) and inter-day (2.4-4.6%) analyses and achieved good recovery at three spiked levels (103.7-114.3%). Moreover, this established method was successfully applied for quantification of GCA in serum samples from healthy volunteers, patients with hepatocellular carcinoma (HCC) and patients with other cancers. We demonstrated that the level of GCA in patients with HCC was significantly higher not only than that in healthy controls, but also than that in patients with other cancer, whereas no significant difference of GCA level was observed between healthy control group and other cancers group.